IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i6d10.1007_s13198-021-01091-1.html
   My bibliography  Save this article

Single and multi-objective optimization of nanofluid flow in flat tube to enhance heat transfer using antlion optimizer algorithms

Author

Listed:
  • Shail Kumar Dinkar

    (G B Pant Institute of Engineering and of Technology)

  • Kusum Deep

    (Indian Institute of Technology Roorkee)

Abstract

This optimization problem focuses to determine the five independent design variables to find out the optimal values of heat transfer coefficient ( $$\stackrel{\sim }{H}$$ H ∼ ) and pressure drop $$(\Delta P)$$ ( Δ P ) parameters. It consists of two conflicting optimization problem as discrete objective functions: first to maximize heat transfer coefficient and second to minimize pressure drop value. In this work, the problem is optimized using two approaches: First, single objective approach for both the objective functions separately to determine the optimal values of design variables using classical ALO and its modified variants. Secondly, multi-objective approach in which both the objective functions are optimized simultaneously to determine objective function values of heat transfer coefficient and pressure drop while optimizing design variables. This purpose is achieved using two different methods of multi-objective optimization: (i) Using weighted sum approach of multi-objective optimization using classical ALO and its proposed variants (ii) Pareto based multi-objective optimization using multi-objective antlion optimizer. The model used in this work is developed using Al2O3-water nanofluid using horizontal flat tube with the help of computational fluid dynamics and response surface methodology (RSM). The obtained results show superiority of ALO and its modified variants approach and also compared with RSM.

Suggested Citation

  • Shail Kumar Dinkar & Kusum Deep, 2021. "Single and multi-objective optimization of nanofluid flow in flat tube to enhance heat transfer using antlion optimizer algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1026-1035, December.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01091-1
    DOI: 10.1007/s13198-021-01091-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01091-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01091-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoodi, S.R. & Mayer, M. & Besser, R.S., 2021. "Rapid and simple assembly of a thin microfluidic fuel cell stack by gas-assisted thermal bonding," Applied Energy, Elsevier, vol. 295(C).
    2. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    3. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    7. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    8. Damir Sostaric & Gyula Mester & Sanja Dorner, 2019. "Mobile ECG and SPO2 Chest Pain Subjective Indicators of Patient with GPS Location in Smart Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 629-639.
    9. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    10. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    11. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    14. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    16. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    17. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    18. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    19. Peng Yang & Ting Zhang & Yuheng Zhang & Sophie Wang & Yingwen Liu, 2020. "Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology," Energies, MDPI, vol. 13(14), pages 1-19, July.
    20. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01091-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.