IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i3d10.1007_s13198-020-00972-1.html
   My bibliography  Save this article

Systematic review of deep learning techniques in plant disease detection

Author

Listed:
  • M. Nagaraju

    (Lovely Professional University)

  • Priyanka Chawla

    (Lovely Professional University)

Abstract

Automatic identification of diseases through hyperspectral images is a very critical and primary challenge for sustainable farming and gained the attention of researchers during the past few years. The technologies proposed, and techniques adopted so far are slighted in their scope and utterly contingent on deep learning models. The performance of convolutional neural networks is emerging as the most powerful tool to diagnose and predict the infections from the crop images. The present article has reviewed some of the existing neural network's techniques that are used to process image data with prominence on detecting crop diseases. First, a review of data acquisition sources, deep learning models/architectures, and different image processing techniques used to process the imaging data provided. Second, the study highlighted the results acquired from the evaluation of various existing deep learning models and finally mentioned the future scope for hyperspectral data analysis. The preparation of this survey is to allow future research to learn larger capabilities of deep learning while detecting plant diseases by improving system performance and accuracy.

Suggested Citation

  • M. Nagaraju & Priyanka Chawla, 2020. "Systematic review of deep learning techniques in plant disease detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 547-560, June.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:3:d:10.1007_s13198-020-00972-1
    DOI: 10.1007/s13198-020-00972-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-00972-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-00972-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    2. Juan Felipe Restrepo-Arias & John W. Branch-Bedoya & Gabriel Awad, 2022. "Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    3. Hamed Alghamdi & Turki Turki, 2023. "PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    4. Mosleh Hmoud Al-Adhaileh & Amit Verma & Theyazn H. H. Aldhyani & Deepika Koundal, 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture," Mathematics, MDPI, vol. 11(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guixiang Xue & Yu Pan & Tao Lin & Jiancai Song & Chengying Qi & Zhipan Wang, 2019. "District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model," Energies, MDPI, vol. 12(11), pages 1-21, June.
    2. Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).
    3. Mazhar Ali & Ankit Kumar Singh & Ajit Kumar & Syed Saqib Ali & Bong Jun Choi, 2023. "Comparative Analysis of Data-Driven Algorithms for Building Energy Planning via Federated Learning," Energies, MDPI, vol. 16(18), pages 1-18, September.
    4. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    5. Michał Sabat & Dariusz Baczyński, 2021. "Usage of the Pareto Fronts as a Tool to Select Data in the Forecasting Process—A Short-Term Electric Energy Demand Forecasting Case," Energies, MDPI, vol. 14(11), pages 1-19, May.
    6. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    7. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    8. Jun Zheng & Bin Dou & Zilong Li & Tianyu Wu & Hong Tian & Guodong Cui, 2021. "Design and Analysis of a While-Drilling Energy-Harvesting Device Based on Piezoelectric Effect," Energies, MDPI, vol. 14(5), pages 1-15, February.
    9. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    10. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm," Energies, MDPI, vol. 13(8), pages 1-20, April.
    11. Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
    12. Xihui Chen & Liping Peng & Gang Cheng & Chengming Luo, 2019. "Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN," Complexity, Hindawi, vol. 2019, pages 1-12, March.
    13. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    14. Rondik J.Hassan & Adnan Mohsin Abdulazeez, 2021. "Deep Learning Convolutional Neural Network for Face Recognition: A Review," International Journal of Science and Business, IJSAB International, vol. 5(2), pages 114-127.
    15. Xin Feng & Qiang Feng & Shaohui Li & Xingwei Hou & Shugui Liu, 2020. "A Deep-Learning-Based Oil-Well-Testing Stage Interpretation Model Integrating Multi-Feature Extraction Methods," Energies, MDPI, vol. 13(8), pages 1-18, April.
    16. Fei Teng & Yafei Song & Xinpeng Guo, 2021. "Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    17. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    18. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    19. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    20. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:3:d:10.1007_s13198-020-00972-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.