IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p1072-d1149128.html
   My bibliography  Save this article

PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features

Author

Listed:
  • Hamed Alghamdi

    (Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Turki Turki

    (Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Overlooked diseases in agriculture severely impact crop growth, which results in significant losses for farmers. Unfortunately, manual field visits for plant disease diagnosis (PDD) are costly and time consuming. Although various methods of PDD have been proposed, many challenges have yet to be investigated, such as early stage leaf disease diagnosis, class variations in diseases, cluttered backgrounds, and computational complexity of the diagnosis system. In this paper, we propose a Convolutional Neural Network (CNN)-based PDD framework (i.e., PDD-Net), which employs data augmentation techniques and incorporates multilevel and multiscale features to create a class and scale-invariant architecture. The Flatten-T Swish (FTS) activation function is utilized to prevent gradient vanishing and exploding problems, while the focal loss function is used to mitigate the impact of class imbalance during PDD-Net training. The PDD-Net method outperforms baseline models, achieving an average precision of 92.06%, average recall of 92.71%, average F1 score of 92.36%, and accuracy of 93.79% on the PlantVillage dataset. It also achieves an average precision of 86.41%, average recall of 85.77%, average F1 score of 86.02%, and accuracy of 86.98% on the cassava leaf disease dataset. These results demonstrate the efficiency and robustness of PDD-Net in plant disease diagnosis.

Suggested Citation

  • Hamed Alghamdi & Turki Turki, 2023. "PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1072-:d:1149128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/1072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/1072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyao Zhang & Yuan Rao & Chao Man & Zhaohui Jiang & Shaowen Li, 2021. "Identification of cucumber leaf diseases using deep learning and small sample size for agricultural Internet of Things," International Journal of Distributed Sensor Networks, , vol. 17(4), pages 15501477211, April.
    2. M. Nagaraju & Priyanka Chawla, 2020. "Systematic review of deep learning techniques in plant disease detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 547-560, June.
    3. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    4. Jinzhu Lu & Lijuan Tan & Huanyu Jiang, 2021. "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    5. Imami, Drini & Valentinov, Vladislav & Skreli, Engjell, 2021. "Food safety and value chain coordination in the context of a transition economy: The role of agricultural cooperatives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(1), pages 21-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosleh Hmoud Al-Adhaileh & Amit Verma & Theyazn H. H. Aldhyani & Deepika Koundal, 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    2. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    3. Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    4. Mingfeng Huang & Guoqin Xu & Junyu Li & Jianping Huang, 2021. "A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    5. Nguyen Thi Nha Trang & Thanh-Thuy Nguyen & Hong V. Pham & Thi Thu Anh Cao & Thu Huong Trinh Thi & Javad Shahreki, 2022. "Impacts of Collaborative Partnership on the Performance of Cold Supply Chains of Agriculture and Foods: Literature Review," Sustainability, MDPI, vol. 14(11), pages 1-28, May.
    6. Edvin Zhllima & Gentjan Mehmeti & Drini Imami, 2021. "Consumer Preferences for Cheese with Focus on Food Safety—A Segmentation Analysis," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    7. Iliriana Miftari & Rainer Haas & Oliver Meixner & Drini Imami & Ekrem Gjokaj, 2022. "Factors Influencing Consumer Attitudes towards Organic Food Products in a Transition Economy—Insights from Kosovo," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    8. Fahman Saeed & Muhammad Hussain & Hatim A. Aboalsamh, 2022. "Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet)," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    9. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    10. Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    11. Irina Pilvere & Aleksejs Nipers & Agnese Krievina & Ilze Upite & Daniels Kotovs, 2022. "LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers," Agriculture, MDPI, vol. 12(5), pages 1-26, May.
    12. Xhoxhi, Orjon & Imami, Drini & Hanf, Jon & Gjokaj, Ekrem, 2022. "Too much power or no power: when does intermediary's power result into better wine and happier farmers?," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 25(5), December.
    13. Juan Felipe Restrepo-Arias & John W. Branch-Bedoya & Gabriel Awad, 2022. "Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    14. Xiangpeng Fan & Zhibin Guan, 2023. "VGNet: A Lightweight Intelligent Learning Method for Corn Diseases Recognition," Agriculture, MDPI, vol. 13(8), pages 1-19, August.
    15. Vladislav Valentinov & Constantine Iliopoulos, 2021. "Social capital in cooperatives: an evolutionary Luhmannian perspective," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1317-1331, September.
    16. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    17. Mark Anthony Camilleri & Livio Cricelli & Roberto Mauriello & Serena Strazzullo, 2023. "Consumer Perceptions of Sustainable Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    18. Paean Hugo Nyawo & Oluwasogo David Olorunfemi, 2023. "Perceived Effectiveness of Agricultural Cooperatives by Smallholder Farmers: Evidence from a Micro-Level Survey in North-Eastern South Africa," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    19. Rana Azab & Rana S. Mahmoud & Rahma Elbehery & Mohamed Gheith, 2023. "A Bi-Objective Mixed-Integer Linear Programming Model for a Sustainable Agro-Food Supply Chain with Product Perishability and Environmental Considerations," Logistics, MDPI, vol. 7(3), pages 1-29, July.
    20. Lushi Isuf & Çera Gentjan & Murrja Arif & Ujkani Sead, 2023. "Linking Farmers’ Bargaining Power in Trade to their Plans for Future Economic Activities," South East European Journal of Economics and Business, Sciendo, vol. 18(2), pages 173-185, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1072-:d:1149128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.