IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i3d10.1007_s10726-023-09869-3.html
   My bibliography  Save this article

A Novel Robust Flexible Minimum Cost Consensus Model with Consensus Granule

Author

Listed:
  • Ying Ji

    (ShangHai University)

  • Yangyun Yuan

    (ShangHai University)

  • Zhisheng Peng

    (AnHui JianZhu University)

Abstract

In the consensus reaching process of group decision making (GDM), consensus measures do not require the consensus opinions of all decision makers. Meanwhile, unit adjustment cost is one of the important and often uncertain factors that affect consensus in GDM. Due to the uncertainty of unit adjustment costs, the moderator may not be able to provide each decision maker with an accurate unit adjustment cost. To overcome these problems, a novel class of group consensus decision models is proposed in this paper. First, fuzzy consensus measures are defined to make the consensus flexible using the specificity and coverage of the consensus granule. Secondly, to describe the uncertainty of the cost of unit adjustment, three uncertainty scenarios are created by the robust optimization approach is introduced. In the end, the feasibility and applicability of the method are verified by taking the classical GDM problem as an example, and sensitivity and comparative analyses are also performed.

Suggested Citation

  • Ying Ji & Yangyun Yuan & Zhisheng Peng, 2024. "A Novel Robust Flexible Minimum Cost Consensus Model with Consensus Granule," Group Decision and Negotiation, Springer, vol. 33(3), pages 441-467, June.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:3:d:10.1007_s10726-023-09869-3
    DOI: 10.1007/s10726-023-09869-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-023-09869-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-023-09869-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    2. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    3. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    4. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    5. Wenyu Yu & Zhen Zhang & Qiuyan Zhong, 2021. "Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach," Annals of Operations Research, Springer, vol. 300(2), pages 443-466, May.
    6. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    7. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    8. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    2. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    3. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    4. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    5. Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
    6. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    7. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    8. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    9. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    10. Zhi-Jiao Du & Zhi-Xiang Chen & Su-Min Yu, 2021. "Improved Failure Mode and Effect Analysis: Implementing Risk Assessment and Conflict Risk Mitigation with Probabilistic Linguistic Information," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    11. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    12. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    13. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    14. Meng, Fanyong & Tang, Jie & An, Qingxian, 2023. "Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making," Omega, Elsevier, vol. 117(C).
    15. Shen, Yufeng & Ma, Xueling & Kou, Gang & Rodríguez, Rosa M. & Zhan, Jianming, 2025. "Consensus methods with Nash and Kalai–Smorodinsky bargaining game for large-scale group decision-making," European Journal of Operational Research, Elsevier, vol. 321(3), pages 865-883.
    16. Zhen-Song Chen & Jing-Yi Lu & Xian-Jia Wang & Witold Pedrycz, 2024. "Identifying Digital Transformation Barriers in Small and Medium-Sized Construction Enterprises: A Multi-criteria Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 15959-15995, December.
    17. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.
    18. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.
    19. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    20. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:3:d:10.1007_s10726-023-09869-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.