IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v35y2023i4d10.1007_s10696-022-09466-7.html
   My bibliography  Save this article

A heuristic for the critical chain scheduling problem based on left shifts of activities

Author

Listed:
  • Wuliang Peng

    (Yantai University)

  • Xuejun Lin

    (Yantai University)

Abstract

The critical chain method (CCM) is a promising project management and scheduling method. Inserting feeding buffers into the baseline schedule is a crucial step in generating the critical chain schedule. However, it will lead to new resource conflicts due to resource constraints. At present, there is a scarcity of study on this subject, and the methods used in the existing literature tend to be oversimplified. This work presents a new solution for critical chain scheduling based on left shifts of activities in the theoretical framework of the CCM. The hypotheses for resolving the precedence and resource conflicts arising from inserting feeding buffers are comprehensively investigated. Under the hypothesis that the sizes of feeding buffers are not permitted to be justified, we insert feeding buffers based on the left shifts of activities and the recursion technique. The priority rule-based method is used in the left shifts to resolve precedence and resource conflicts, and thus, a heuristic for critical chain scheduling is proposed. Finally, we conduct computational experiments to test the performance of 11 priority rules and 121 priority rule pairs in the heuristics. The experimental results will help to choose priority rules when applying the presented heuristic to real-world project management.

Suggested Citation

  • Wuliang Peng & Xuejun Lin, 2023. "A heuristic for the critical chain scheduling problem based on left shifts of activities," Flexible Services and Manufacturing Journal, Springer, vol. 35(4), pages 1313-1336, December.
  • Handle: RePEc:spr:flsman:v:35:y:2023:i:4:d:10.1007_s10696-022-09466-7
    DOI: 10.1007/s10696-022-09466-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-022-09466-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-022-09466-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    2. She, Bingling & Chen, Bo & Hall, Nicholas G., 2021. "Buffer sizing in critical chain project management by network decomposition," Omega, Elsevier, vol. 102(C).
    3. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    4. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
    5. Cui, Nanfang & Demeulemeester, Erik & Bie, Li, 2016. "Incorporation of activity sensitivity measures into buffer management to manage project schedule riskAuthor-Name: Hu, Xuejun," European Journal of Operational Research, Elsevier, vol. 249(2), pages 717-727.
    6. Dale F. Cooper, 1976. "Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation," Management Science, INFORMS, vol. 22(11), pages 1186-1194, July.
    7. Tukel, Oya I. & Rom, Walter O. & Eksioglu, Sandra Duni, 2006. "An investigation of buffer sizing techniques in critical chain scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 401-416, July.
    8. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    9. Xuejun Hu & Erik Demeulemeester & Nanfang Cui & Jianjiang Wang & Wendi Tian, 2017. "Improved critical chain buffer management framework considering resource costs and schedule stability," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 159-183, June.
    10. William P. Millhiser & Joseph G. Szmerekovsky, 2012. "Teaching Critical Chain Project Management: The Academic Debate and Illustrative Examples," INFORMS Transactions on Education, INFORMS, vol. 12(2), pages 67-77, January.
    11. Seyed Ashkan Zarghami & Indra Gunawan & Graciela Corral de Zubielqui & Bassam Baroudi, 2020. "Incorporation of resource reliability into critical chain project management buffer sizing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(20), pages 6130-6144, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Szwarcfiter & Yale T. Herer & Avraham Shtub, 2024. "Shortening the project schedule: solving multimode chance-constrained critical chain buffer management using reinforcement learning," Annals of Operations Research, Springer, vol. 337(2), pages 565-592, June.
    2. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    3. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    4. Seyed Ashkan Zarghami, 2024. "Project schedule contingency planning: Building on von Bertalanffy's open systems theory and critical systems practice," Systems Research and Behavioral Science, Wiley Blackwell, vol. 41(2), pages 247-261, March.
    5. Zhang, Jingwen & Li, Lubo & Demeulemeester, Erik & Zhang, Haohua, 2024. "A three-dimensional spatial resource-constrained project scheduling problem: Model and heuristic," European Journal of Operational Research, Elsevier, vol. 319(3), pages 943-966.
    6. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    7. Chunlai Yu & Xiaoming Wang & Qingxin Chen, 2025. "Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
    8. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    9. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    10. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    11. Mengqi Zhao & Xiaoling Wang & Jia Yu & Lei Bi & Yao Xiao & Jun Zhang, 2020. "Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm," Energies, MDPI, vol. 13(1), pages 1-17, January.
    12. Böttcher, Jan & Drexl, Andreas & Kolisch, Rainer & Salewski, Frank, 1996. "Project scheduling under partially renewable resource constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Lova, Antonio & Maroto, Concepcion & Tormos, Pilar, 2000. "A multicriteria heuristic method to improve resource allocation in multiproject scheduling," European Journal of Operational Research, Elsevier, vol. 127(2), pages 408-424, December.
    14. Kolisch, Rainer & Hartmann, Sönke, 1998. "Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 469, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Schirmer, Andreas, 1998. "Case-based reasoning and improved adaptive search for project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 472, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Klein, Robert, 2000. "Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 127(3), pages 619-638, December.
    17. Asadabadi, Mehdi Rajabi & Zwikael, Ofer, 2021. "Integrating risk into estimations of project activities' time and cost: A stratified approach," European Journal of Operational Research, Elsevier, vol. 291(2), pages 482-490.
    18. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    19. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    20. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:4:d:10.1007_s10696-022-09466-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.