IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v35y2023i3d10.1007_s10696-022-09455-w.html
   My bibliography  Save this article

Overflow in systems with two servers: the negative consequences

Author

Listed:
  • Yanting Chen

    (University of Shanghai for Science and Technology)

  • Jingui Xie

    (Technical University of Munich)

  • Taozeng Zhu

    (Dongbei University of Finance and Economics)

Abstract

We investigate a system with two types of customers wherein each customer type has a dedicated server. When the corresponding dedicated server is busy, we allow customer overflow to the non-dedicated server, and the service time of each server is customer-dependent. The objective of this study is to assess the negative consequences of overflow. On the basis of the analytical stationary distribution of the proposed two-server model, we first identify the conditions under which overflow leads to improvement of throughputs. Second, we obtain customers’ overflow rates and ratios. For a symmetric system under heavy traffic, the wrong assignment ratio comes close to 50%. Third, we analyze the probability that a customer is served by a non-dedicated server. The probability that both servers are serving non-dedicated customers approaches 25% in a symmetric system under heavy traffic. Finally, we determine various overflow conditions while including the overflow costs.

Suggested Citation

  • Yanting Chen & Jingui Xie & Taozeng Zhu, 2023. "Overflow in systems with two servers: the negative consequences," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 838-863, September.
  • Handle: RePEc:spr:flsman:v:35:y:2023:i:3:d:10.1007_s10696-022-09455-w
    DOI: 10.1007/s10696-022-09455-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-022-09455-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-022-09455-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. G. Dai & Pengyi Shi, 2019. "Inpatient Overflow: An Approximate Dynamic Programming Approach," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 894-911, October.
    2. Avishai Mandelbaum & Martin I. Reiman, 1998. "On Pooling in Queueing Networks," Management Science, INFORMS, vol. 44(7), pages 971-981, July.
    3. Hummy Song & Anita L. Tucker & Ryan Graue & Sarah Moravick & Julius J. Yang, 2020. "Capacity Pooling in Hospitals: The Hidden Consequences of Off-Service Placement," Management Science, INFORMS, vol. 66(9), pages 3825-3842, September.
    4. Nadra Abdalla & Richard Boucherie, 2002. "Blocking Probabilities in Mobile Communications Networks with Time-Varying Rates and Redialing Subscribers," Annals of Operations Research, Springer, vol. 112(1), pages 15-34, April.
    5. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    6. Ward Whitt, 1999. "Partitioning Customers into Service Groups," Management Science, INFORMS, vol. 45(11), pages 1579-1592, November.
    7. Ward Whitt, 1992. "Understanding the Efficiency of Multi-Server Service Systems," Management Science, INFORMS, vol. 38(5), pages 708-723, May.
    8. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    9. Md Asaduzzaman & Thierry Chaussalet & Nicola Robertson, 2010. "A loss network model with overflow for capacity planning of a neonatal unit," Annals of Operations Research, Springer, vol. 178(1), pages 67-76, July.
    10. Ronald W. Wolff, 1982. "Poisson Arrivals See Time Averages," Operations Research, INFORMS, vol. 30(2), pages 223-231, April.
    11. Litvak, Nelly & van Rijsbergen, Marleen & Boucherie, Richard J. & van Houdenhoven, Mark, 2008. "Managing the overflow of intensive care patients," European Journal of Operational Research, Elsevier, vol. 185(3), pages 998-1010, March.
    12. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    2. Noah Gans & Yong-Pin Zhou, 2007. "Call-Routing Schemes for Call-Center Outsourcing," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 33-50, May.
    3. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    4. René Bekker & Ger Koole & Dennis Roubos, 2017. "Flexible bed allocations for hospital wards," Health Care Management Science, Springer, vol. 20(4), pages 453-466, December.
    5. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    6. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    7. Hummy Song & Anita L. Tucker & Ryan Graue & Sarah Moravick & Julius J. Yang, 2020. "Capacity Pooling in Hospitals: The Hidden Consequences of Off-Service Placement," Management Science, INFORMS, vol. 66(9), pages 3825-3842, September.
    8. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    9. Ward Whitt, 1999. "Partitioning Customers into Service Groups," Management Science, INFORMS, vol. 45(11), pages 1579-1592, November.
    10. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    11. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    12. Hideaki Takagi & Yuta Kanai & Kazuo Misue, 2017. "Queueing network model for obstetric patient flow in a hospital," Health Care Management Science, Springer, vol. 20(3), pages 433-451, September.
    13. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    14. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.
    15. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    16. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    17. Guihua Wang & Ronghuo Zheng & Tinglong Dai, 2022. "Does Transportation Mean Transplantation? Impact of New Airline Routes on Sharing of Cadaveric Kidneys," Management Science, INFORMS, vol. 68(5), pages 3660-3679, May.
    18. Josh Reed & Bo Zhang, 2017. "Managing capacity and inventory jointly for multi-server make-to-stock queues," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 61-94, June.
    19. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    20. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:3:d:10.1007_s10696-022-09455-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.