IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v3y1999i4p413-432.html
   My bibliography  Save this article

Minimal realizations of interest rate models

Author

Listed:
  • Tomas BjÃrk

    () (Department of Finance, Stockholm School of Economics, Box 6501, SE-113 83 Stockholm Sweden)

  • Andrea Gombani

    () (LADSEB-CNR, Corso Stati Uniti 4, I-35127 Padova, Italy Manuscript)

Abstract

We consider interest rate models where the forward rates are allowed to be driven by a multidimensional Wiener process as well as by a marked point process. Assuming a deterministic volatility structure, and using ideas from systems and control theory, we investigate when the input-output map generated by such a model can be realized by a finite dimensional stochastic differential equation. We give necessary and sufficient conditions, in terms of the given volatility structure, for the existence of a finite dimensional realization and we provide a formula for the determination of the dimension of a minimal realization. The abstract state space for a minimal realization is shown to have an immediate economic interpretation in terms of a minimal set of benchmark forward rates, and we give explicit formulas for bond prices in terms of the benchmark rates as well as for the computation of derivative prices.

Suggested Citation

  • Tomas BjÃrk & Andrea Gombani, 1999. "Minimal realizations of interest rate models," Finance and Stochastics, Springer, vol. 3(4), pages 413-432.
  • Handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:413-432
    Note: received: July 1997; final version received: December 1998
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/9003004/90030413.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitao Li & Xiaoxia Ye, 2013. "A Type of HJM Based Affine Model: Theory and Empirical Evidence," WISE Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    2. Björk, Tomas, 2003. "On the Geometry of Interest Rate Models," SSE/EFI Working Paper Series in Economics and Finance 545, Stockholm School of Economics.
    3. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Björk, Tomas, 2000. "A Geometric View of Interest Rate Theory," SSE/EFI Working Paper Series in Economics and Finance 419, Stockholm School of Economics, revised 21 Dec 2000.
    5. Björk, Tomas & Landen, Camilla, 2000. "On the construction of finite dimensional realizations for nonlinear forward rate models," SSE/EFI Working Paper Series in Economics and Finance 420, Stockholm School of Economics.
    6. Gombani, Andrea & Jaschke, Stefan R. & Runggaldier, Wolfgang J., 2005. "A filtered no arbitrage model for term structures from noisy data," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 381-400, March.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    9. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," SSE/EFI Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 07 May 2002.
    10. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    11. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    12. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance,in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742 Elsevier.

    More about this item

    Keywords

    Interest rates; realization theory; factor models;

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:3:y:1999:i:4:p:413-432. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.