IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i2d10.1007_s00780-024-00532-6.html
   My bibliography  Save this article

Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model

Author

Listed:
  • Oleksii Mostovyi

    (University of Connecticut)

  • Mihai Sîrbu

    (The University of Texas at Austin)

Abstract

We study the response of the optimal investment problem to small changes of the stock price dynamics. Starting with a multidimensional semimartingale setting of an incomplete market, we suppose that the perturbation process is also a general semimartingale. We obtain second-order expansions of the value functions, first-order corrections to the optimisers, and provide the adjustments to the optimal control that match the objective function up to the second order. We also give a characterisation in terms of the risk-tolerance wealth process, if it exists, by reducing the problem to the Kunita–Watanabe decomposition under a change of measure and numéraire. Finally, we illustrate the results by examples of base models that allow closed-form solutions, but where this structure is lost under perturbations of the model where our results allow an approximate solution.

Suggested Citation

  • Oleksii Mostovyi & Mihai Sîrbu, 2024. "Quadratic expansions in optimal investment with respect to perturbations of the semimartingale model," Finance and Stochastics, Springer, vol. 28(2), pages 553-613, April.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:2:d:10.1007_s00780-024-00532-6
    DOI: 10.1007/s00780-024-00532-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-024-00532-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-024-00532-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Robertson, 2017. "Pricing For Large Positions In Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 746-778, July.
    2. Paolo Guasoni & Scott Robertson, 2015. "Static Fund Separation Of Long-Term Investments," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 789-826, October.
    3. Jan Kallsen & Johannes Muhle-Karbe, 2017. "The General Structure Of Optimal Investment And Consumption With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 659-703, July.
    4. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    5. Vicky Henderson, 2002. "Valuation Of Claims On Nontraded Assets Using Utility Maximization," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 351-373, October.
    6. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    7. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    8. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    9. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    10. Michael Monoyios, 2012. "Malliavin calculus method for asymptotic expansion of dual control problems," Papers 1209.6497, arXiv.org, revised Oct 2013.
    11. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    12. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    13. Dmitry Kramkov & Mihai S^{{i}}rbu, 2006. "On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets," Papers math/0610224, arXiv.org.
    14. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    15. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    16. Jan Kallsen, 2002. "Derivative pricing based on local utility maximization," Finance and Stochastics, Springer, vol. 6(1), pages 115-140.
    17. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    18. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    19. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    2. Kasper Larsen & Oleksii Mostovyi & Gordan Žitković, 2018. "An expansion in the model space in the context of utility maximization," Finance and Stochastics, Springer, vol. 22(2), pages 297-326, April.
    3. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    4. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    5. Kasper Larsen & Oleksii Mostovyi & Gordan v{Z}itkovi'c, 2014. "An expansion in the model space in the context of utility maximization," Papers 1410.0946, arXiv.org, revised Aug 2016.
    6. Oleksii Mostovyi & Mihai S^irbu, 2017. "Sensitivity analysis of the utility maximization problem with respect to model perturbations," Papers 1705.08291, arXiv.org.
    7. Sergei Egorov & Serguei Pergamenchtchikov, 2024. "Optimal investment and consumption for financial markets with jumps under transaction costs," Finance and Stochastics, Springer, vol. 28(1), pages 123-159, January.
    8. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    9. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    10. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    11. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2018. "Optimal Investment, Demand and Arbitrage under Price Impact," Papers 1804.09151, arXiv.org, revised Dec 2018.
    12. Rubtsov, Alexey & Xu, Wei & Šević, Aleksandar & Šević, Željko, 2021. "Price of climate risk hedging under uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    13. Paolo Guasoni & Constantinos Kardaras & Scott Robertson & Hao Xing, 2014. "Abstract, classic, and explicit turnpikes," Finance and Stochastics, Springer, vol. 18(1), pages 75-114, January.
    14. Hao Xing, 2015. "Consumption investment optimization with Epstein-Zin utility in incomplete markets," Papers 1501.04747, arXiv.org, revised Nov 2015.
    15. Michael Mania & Marina Santacroce, 2008. "Exponential Utility Maximization under Partial Information," ICER Working Papers - Applied Mathematics Series 24-2008, ICER - International Centre for Economic Research.
    16. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2021. "Optimal investment, derivative demand, and arbitrage under price impact," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 3-35, January.
    17. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    18. Michael Mania & Marina Santacroce, 2010. "Exponential utility maximization under partial information," Finance and Stochastics, Springer, vol. 14(3), pages 419-448, September.
    19. repec:dau:papers:123456789/7101 is not listed on IDEAS
    20. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062.
    21. Daniel Bartl & Ariel Neufeld & Kyunghyun Park, 2023. "Sensitivity of robust optimization problems under drift and volatility uncertainty," Papers 2311.11248, arXiv.org, revised Feb 2025.

    More about this item

    Keywords

    Asymptotic analysis; Semimartingale; Incomplete market; Duality theory;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:2:d:10.1007_s00780-024-00532-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.