IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i1d10.1007_s00780-023-00526-w.html
   My bibliography  Save this article

Faking Brownian motion with continuous Markov martingales

Author

Listed:
  • Mathias Beiglböck

    (University of Vienna)

  • George Lowther
  • Gudmund Pammer

    (ETH Zürich)

  • Walter Schachermayer

    (University of Vienna)

Abstract

Hamza and Klebaner (2007) [10] posed the problem of constructing martingales with one-dimensional Brownian marginals that differ from Brownian motion, so-called fake Brownian motions. Besides its theoretical appeal, this problem represents the quintessential version of the ubiquitous fitting problem in mathematical finance where the task is to construct martingales that satisfy marginal constraints imposed by market data. Non-continuous solutions to this challenge were given by Madan and Yor (2002) [22], Hamza and Klebaner (2007) [10], Hobson (2016) [11] and Fan et al. (2015) [8], whereas continuous (but non-Markovian) fake Brownian motions were constructed by Oleszkiewicz (2008) [23], Albin (2008) [1], Baker et al. (2006) [4], Hobson (2013) [14], Jourdain and Zhou (2020) [16]. In contrast, it is known from Gyöngy (1986) [9], Dupire (1994) [7] and ultimately Lowther (2008) [17] and Lowther (2009) [20] that Brownian motion is the unique continuous strong Markov martingale with one-dimensional Brownian marginals. We took this as a challenge to construct examples of a “barely fake” Brownian motion, that is, continuous Markov martingales with one-dimensional Brownian marginals that miss out only on the strong Markov property.

Suggested Citation

  • Mathias Beiglböck & George Lowther & Gudmund Pammer & Walter Schachermayer, 2024. "Faking Brownian motion with continuous Markov martingales," Finance and Stochastics, Springer, vol. 28(1), pages 259-284, January.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00526-w
    DOI: 10.1007/s00780-023-00526-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00526-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00526-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Fake Brownian motion; Mimicking processes; Markov property;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00526-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.