IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v28y2024i1d10.1007_s00780-023-00526-w.html
   My bibliography  Save this article

Faking Brownian motion with continuous Markov martingales

Author

Listed:
  • Mathias Beiglböck

    (University of Vienna)

  • George Lowther
  • Gudmund Pammer

    (ETH Zürich)

  • Walter Schachermayer

    (University of Vienna)

Abstract

Hamza and Klebaner (2007) [10] posed the problem of constructing martingales with one-dimensional Brownian marginals that differ from Brownian motion, so-called fake Brownian motions. Besides its theoretical appeal, this problem represents the quintessential version of the ubiquitous fitting problem in mathematical finance where the task is to construct martingales that satisfy marginal constraints imposed by market data. Non-continuous solutions to this challenge were given by Madan and Yor (2002) [22], Hamza and Klebaner (2007) [10], Hobson (2016) [11] and Fan et al. (2015) [8], whereas continuous (but non-Markovian) fake Brownian motions were constructed by Oleszkiewicz (2008) [23], Albin (2008) [1], Baker et al. (2006) [4], Hobson (2013) [14], Jourdain and Zhou (2020) [16]. In contrast, it is known from Gyöngy (1986) [9], Dupire (1994) [7] and ultimately Lowther (2008) [17] and Lowther (2009) [20] that Brownian motion is the unique continuous strong Markov martingale with one-dimensional Brownian marginals. We took this as a challenge to construct examples of a “barely fake” Brownian motion, that is, continuous Markov martingales with one-dimensional Brownian marginals that miss out only on the strong Markov property.

Suggested Citation

  • Mathias Beiglböck & George Lowther & Gudmund Pammer & Walter Schachermayer, 2024. "Faking Brownian motion with continuous Markov martingales," Finance and Stochastics, Springer, vol. 28(1), pages 259-284, January.
  • Handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00526-w
    DOI: 10.1007/s00780-023-00526-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00526-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00526-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mathias Beiglböck & Gudmund Pammer & Walter Schachermayer, 2022. "From Bachelier to Dupire via optimal transport," Finance and Stochastics, Springer, vol. 26(1), pages 59-84, January.
    2. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    3. Benjamin Jourdain & Alexandre Zhou, 2020. "Existence of a calibrated regime switching local volatility model," Mathematical Finance, Wiley Blackwell, vol. 30(2), pages 501-546, April.
    4. Oleszkiewicz, Krzysztof, 2008. "On fake Brownian motions," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1251-1254, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter K. Friz & Benjamin Jourdain & Thomas Wagenhofer & Alexandre Zhou, 2025. "On the Weak Error for Local Stochastic Volatility Models," Papers 2506.10817, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Beiglböck & Gudmund Pammer & Walter Schachermayer, 2022. "From Bachelier to Dupire via optimal transport," Finance and Stochastics, Springer, vol. 26(1), pages 59-84, January.
    2. Mathias Beiglbock & Gudmund Pammer & Walter Schachermayer, 2021. "From Bachelier to Dupire via Optimal Transport," Papers 2106.12395, arXiv.org.
    3. Mathias Beiglbock & George Lowther & Gudmund Pammer & Walter Schachermayer, 2021. "Faking Brownian motion with continuous Markov martingales," Papers 2109.12927, arXiv.org.
    4. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    5. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    6. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    7. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    8. Benjamin Jourdain & Kexin Shao, 2023. "Maximal Martingale Wasserstein Inequality," Papers 2310.08492, arXiv.org.
    9. Martin Larsson & Shukun Long, 2024. "Markovian projections for It\^o semimartingales with jumps," Papers 2403.15980, arXiv.org.
    10. Martin Larsson & Shukun Long, 2024. "Inverting the Markovian projection for pure jump processes," Papers 2412.04589, arXiv.org.
    11. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    12. Benjamin Jourdain & Kexin Shao, 2024. "Maximal Martingale Wasserstein Inequality," Post-Print hal-04241070, HAL.
    13. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Tightness and duality of martingale transport on the Skorokhod space," Papers 1507.01125, arXiv.org, revised Aug 2016.
    14. Ariel Neufeld & Julian Sester, 2021. "On the stability of the martingale optimal transport problem: A set-valued map approach," Papers 2102.02718, arXiv.org, revised Apr 2021.
    15. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    16. Neufeld, Ariel & Sester, Julian, 2021. "On the stability of the martingale optimal transport problem: A set-valued map approach," Statistics & Probability Letters, Elsevier, vol. 176(C).
    17. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    18. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    19. Christoph Reisinger & Maria Olympia Tsianni, 2025. "Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model," Papers 2504.14343, arXiv.org.
    20. David Hobson & Dominykas Norgilas, 2017. "Robust bounds for the American Put," Papers 1711.06466, arXiv.org, revised May 2018.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:28:y:2024:i:1:d:10.1007_s00780-023-00526-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.