IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04241070.html
   My bibliography  Save this paper

Maximal Martingale Wasserstein Inequality

Author

Listed:
  • Benjamin Jourdain

    (MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées)

  • Kexin Shao

    (MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées, CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this note, we complete the analysis of the Martingale Wasserstein Inequality started in [5] by checking that this inequality fails in dimension d ≥ 2 when the integrability parameter ρ belongs to [1, 2) while a stronger Maximal Martingale Wasserstein Inequality holds whatever the dimension d when ρ ≥ 2.

Suggested Citation

  • Benjamin Jourdain & Kexin Shao, 2024. "Maximal Martingale Wasserstein Inequality," Post-Print hal-04241070, HAL.
  • Handle: RePEc:hal:journl:hal-04241070
    DOI: 10.1214/24-ECP593
    Note: View the original document on HAL open archive server: https://hal.science/hal-04241070v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04241070v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1214/24-ECP593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathias Beiglbock & Benjamin Jourdain & William Margheriti & Gudmund Pammer, 2021. "Stability of the Weak Martingale Optimal Transport Problem," Papers 2109.06322, arXiv.org, revised Apr 2022.
    2. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Jourdain & Kexin Shao, 2023. "Maximal Martingale Wasserstein Inequality," Papers 2310.08492, arXiv.org.
    2. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    3. Julian Sester, 2023. "On intermediate marginals in martingale optimal transportation," Mathematics and Financial Economics, Springer, volume 17, number 2, September.
    4. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    5. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    6. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    7. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    8. Neufeld, Ariel & Sester, Julian, 2021. "On the stability of the martingale optimal transport problem: A set-valued map approach," Statistics & Probability Letters, Elsevier, vol. 176(C).
    9. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    10. Florian F Gunsilius, 2025. "A primer on optimal transport for causal inference with observational data," Papers 2503.07811, arXiv.org, revised Mar 2025.
    11. David Hobson & Dominykas Norgilas, 2017. "Robust bounds for the American Put," Papers 1711.06466, arXiv.org, revised May 2018.
    12. Aurélien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2019. "Sampling Of One-Dimensional Probability Measures In The Convex Order And Computation Of Robust Option Price Bounds," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-41, May.
    13. Beatrice Acciaio & Mathias Beiglböck & Gudmund Pammer, 2021. "Weak transport for non‐convex costs and model‐independence in a fixed‐income market," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1423-1453, October.
    14. Eberhard Mayerhofer, 2024. "The Smirnov Property for Weighted Lebesgue Spaces," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    15. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.
    16. Zhengqing Zhou & Jose Blanchet & Peter W. Glynn, 2021. "Distributionally Robust Martingale Optimal Transport," Papers 2106.07191, arXiv.org, revised Nov 2021.
    17. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    18. Mathias Beiglböck & George Lowther & Gudmund Pammer & Walter Schachermayer, 2024. "Faking Brownian motion with continuous Markov martingales," Finance and Stochastics, Springer, vol. 28(1), pages 259-284, January.
    19. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    20. Gaoyue Guo, 2017. "A stability result on optimal Skorokhod embedding," Papers 1701.08204, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04241070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.