IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v16y2012i1p63-104.html
   My bibliography  Save this article

Tangent Lévy market models

Author

Listed:
  • René Carmona
  • Sergey Nadtochiy

Abstract

No abstract is available for this item.

Suggested Citation

  • René Carmona & Sergey Nadtochiy, 2012. "Tangent Lévy market models," Finance and Stochastics, Springer, vol. 16(1), pages 63-104, January.
  • Handle: RePEc:spr:finsto:v:16:y:2012:i:1:p:63-104
    DOI: 10.1007/s00780-011-0158-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-011-0158-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-011-0158-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans Buehler, 2006. "Expensive martingales," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 207-218.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    4. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    5. Rama Cont & Jose da Fonseca & Valdo Durrleman, 2002. "Stochastic Models of Implied Volatility Surfaces," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 361-377, July.
    6. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    7. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    10. Martin Schweizer & Johannes Wissel, 2008. "Term Structures Of Implied Volatilities: Absence Of Arbitrage And Existence Results," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 77-114, January.
    11. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    12. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    13. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    14. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    15. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    2. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    3. Jan Kallsen & Paul Kruhner, 2013. "On a Heath-Jarrow-Morton approach for stock options," Papers 1305.5621, arXiv.org, revised Aug 2013.
    4. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    5. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    6. Brian Ning & Sebastian Jaimungal & Xiaorong Zhang & Maxime Bergeron, 2021. "Arbitrage-Free Implied Volatility Surface Generation with Variational Autoencoders," Papers 2108.04941, arXiv.org, revised Jan 2022.
    7. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    8. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    9. Jan Kallsen & Paul Krühner, 2015. "On a Heath–Jarrow–Morton approach for stock options," Finance and Stochastics, Springer, vol. 19(3), pages 583-615, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    2. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
    3. Jan Kallsen & Paul Krühner, 2015. "On a Heath–Jarrow–Morton approach for stock options," Finance and Stochastics, Springer, vol. 19(3), pages 583-615, July.
    4. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    5. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    6. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    7. S. Kindermann & P. Mayer, 2011. "On the calibration of local jump-diffusion asset price models," Finance and Stochastics, Springer, vol. 15(4), pages 685-724, December.
    8. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org.
    9. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    10. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    11. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    12. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    13. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    14. Mehdi El Amrani & Antoine Jacquier & Claude Martini, 2019. "Dynamics of symmetric SSVI smiles and implied volatility bubbles," Papers 1909.10272, arXiv.org, revised Feb 2021.
    15. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    16. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    17. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
    18. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    19. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    20. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.

    More about this item

    Keywords

    Implied volatility surface; Tangent models; Lévy processes; Market models; Arbitrage-free term structure dynamics; Heath–Jarrow–Morton theory; 91B24; C02; G12; G13;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:16:y:2012:i:1:p:63-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.