IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v11y2025i1d10.1186_s40854-025-00752-5.html
   My bibliography  Save this article

Active tokens and crypto-asset valuation

Author

Listed:
  • Konstantinos Pantelidis

    (University of Macedonia)

Abstract

This research investigates token dormancy as a fundamental metric for evaluating cryptocurrency assets and presents a methodology for its measurement. The valuation method involves 4 distinct parameters and utilizes a 3.5-year daily dataset for the “Chainlink” token. The results are used in optimized ARIMA-GARCH models to analyze the first differences between the variables; the out-of-sample forecasts were assessed with performance metrics. Furthermore, this study introduces a novel fundamental value derived from these approaches, the basis for generating selling signals in a backtested trading strategy. The trading strategy results are compared to a benchmark buy-and-hold strategy and a non-selling dollar-cost-averaging strategy for evaluation. Employing the dollar-cost averaging approach for purchase frequency and utilizing the “isolation forest” technique for identifying selling signals within the trading strategy yielded positive results.

Suggested Citation

  • Konstantinos Pantelidis, 2025. "Active tokens and crypto-asset valuation," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-37, December.
  • Handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-025-00752-5
    DOI: 10.1186/s40854-025-00752-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-025-00752-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-025-00752-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reginald D. Smith, 2017. "Bitcoin Average Dormancy: A Measure of Turnover and Trading Activity," Papers 1712.10287, arXiv.org, revised Feb 2018.
    2. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    3. Koutmos, Dimitrios, 2018. "Bitcoin returns and transaction activity," Economics Letters, Elsevier, vol. 167(C), pages 81-85.
    4. Elie Kapengut & Bruce Mizrach, 2023. "An Event Study of the Ethereum Transition to Proof-of-Stake," Commodities, MDPI, vol. 2(2), pages 1-15, March.
    5. Lin William Cong & Ye Li & Neng Wang, 2021. "Tokenomics: Dynamic Adoption and Valuation [The demand of liquid assets with uncertain lumpy expenditures]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1105-1155.
    6. Chen, Jialan & Lin, Dan & Wu, Jiajing, 2022. "Do cryptocurrency exchanges fake trading volumes? An empirical analysis of wash trading based on data mining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    7. Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
    8. Adam S. Hayes, 2019. "Bitcoin price and its marginal cost of production: support for a fundamental value," Applied Economics Letters, Taylor & Francis Journals, vol. 26(7), pages 554-560, April.
    9. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    10. Liebi, Luca J., 2022. "Is there a value premium in cryptoasset markets?," Economic Modelling, Elsevier, vol. 109(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
    2. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    3. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    4. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    5. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    6. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    7. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    10. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    11. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    12. José Parra-Moyano & Gregor Reich & Karl Schmedders, 2024. "A Note on the Non-proportionality of Winning Probabilities in Bitcoin," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1697-1714, September.
    13. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    14. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    15. Kokulo K. Lawuobahsumo & Bernardina Algieri & Arturo Leccadito, 2024. "Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(3), pages 2647-2675, June.
    16. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    17. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    18. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    19. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    20. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:11:y:2025:i:1:d:10.1186_s40854-025-00752-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.