IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-023-00519-w.html
   My bibliography  Save this article

A hybrid model for stock price prediction based on multi-view heterogeneous data

Author

Listed:
  • Wen Long

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jing Gao

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Kehan Bai

    (Beijing Jiaotong University)

  • Zhichen Lu

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Literature shows that both market data and financial media impact stock prices; however, using only one kind of data may lead to information bias. Therefore, this study uses market data and news to investigate their joint impact on stock price trends. However, combining these two types of information is difficult because of their completely different characteristics. This study develops a hybrid model called MVL-SVM for stock price trend prediction by integrating multi-view learning with a support vector machine (SVM). It works by simply inputting heterogeneous multi-view data simultaneously, which may reduce information loss. Compared with the ARIMA and classic SVM models based on single- and multi-view data, our hybrid model shows statistically significant advantages. In the robustness test, our model outperforms the others by at least 10% accuracy when the sliding windows of news and market data are set to 1–5 days, which confirms our model’s effectiveness. Finally, trading strategies based on single stock and investment portfolios are constructed separately, and the simulations show that MVL-SVM has better profitability and risk control performance than the benchmarks.

Suggested Citation

  • Wen Long & Jing Gao & Kehan Bai & Zhichen Lu, 2024. "A hybrid model for stock price prediction based on multi-view heterogeneous data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-50, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00519-w
    DOI: 10.1186/s40854-023-00519-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-023-00519-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-023-00519-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Shiller, 2015. "Irrational Exuberance," Economics Books, Princeton University Press, edition 3, number 10421.
    2. Jeffrey E. Jarrett & Janne Schilling, 2008. "Daily variation and predicting stock market returns for the frankfurter börse (stock market)," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 9(3), pages 189-198, March.
    3. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    4. Michelangelo Ceci & Gianvito Pio & Vladimir Kuzmanovski & Sašo Džeroski, 2015. "Semi-Supervised Multi-View Learning for Gene Network Reconstruction," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2024. "Forecasting relative returns for S&P 500 stocks using machine learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-16, December.
    2. Daisuke Ikeda & Toan Phan & Timothy Sablik, 2020. "Asset Bubbles and Global Imbalances," Richmond Fed Economic Brief, Federal Reserve Bank of Richmond, vol. 20, pages 1-4, January.
    3. Joshua Schwartzstein & Adi Sunderam, 2021. "Using Models to Persuade," American Economic Review, American Economic Association, vol. 111(1), pages 276-323, January.
    4. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    5. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    6. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    7. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    8. Maysam Khodayari Gharanchaei & Reza Babazadeh, 2024. "Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns," Papers 2409.14510, arXiv.org.
    9. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    10. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    11. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    12. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    13. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    14. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    15. Alan Randall, 2022. "Driving with Eyes on the Rear-View Mirror—Why Weak Sustainability Is Not Enough," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    16. Wang, Danxia, 2024. "Beyond active share: Boosting fund performance through common holdings with same-benchmark mutual funds," International Review of Financial Analysis, Elsevier, vol. 92(C).
    17. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    18. Fernández-Villaverde, Jesús & Levintal, Oren, 2024. "The Distributional Effects of Asset Returns," CEPR Discussion Papers 18855, C.E.P.R. Discussion Papers.
    19. Cortés, Kristle & Duchin, Ran & Sosyura, Denis, 2016. "Clouded judgment: The role of sentiment in credit origination," Journal of Financial Economics, Elsevier, vol. 121(2), pages 392-413.
    20. Ricardo Delao & Sean Myers, 2021. "Subjective Cash Flow and Discount Rate Expectations," Journal of Finance, American Finance Association, vol. 76(3), pages 1339-1387, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00519-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.