IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v98y2025i3d10.1140_epjb_s10051-025-00896-4.html
   My bibliography  Save this article

Unveiling the thermoelectric potential of perthioborate MBS₃(M = Rb;Cs) compounds: insights from DFT calculations

Author

Listed:
  • Garadi Fatima

    (Amar Telidji University)

  • Said Maabed

    (Amar Telidji University)

  • Hanifi Mebarki

    (Amar Telidji University)

  • Mohamed Halit

    (Amar Telidji University)

  • Chérif F. Matta

    (Mount Saint Vincent University)

  • Lamin Ben Kamri Ahmed

    (Université Amar Telidji de Laghouat)

Abstract

This study presents a thorough theoretical investigation of perthioborate MBS₃ (M = Rb, Cs), a type of chalcogenometallate structure, using density functional theory to evaluate their suitability for thermoelectric applications. We examine the interconnections among their electronic, elastic, and thermoelectric properties. Electronic structure calculations reveal that these materials possess an indirect bandgap equal to 1.9 eV for M = Rb and 2.1 eV for M = Cs. Both RbBS₃ and CsBS₃ display low elastic constants, enhanced phonon anharmonicity and reduced thermal conductivity, which positions them as promising candidates for thermoelectric use. They also exhibit a substantial Seebeck coefficient and excellent electrical conductivity, especially along the zz direction, with values surpassing 400,000 Ω⁻1m⁻1 at 300 K. Within the temperature range of 400 K to 600 K, both materials demonstrate a high figure of merit close to 1. These theoretical insights highlight the promising potential of perthioborate materials for high-performance thermoelectric applications. Graphical abstract

Suggested Citation

  • Garadi Fatima & Said Maabed & Hanifi Mebarki & Mohamed Halit & Chérif F. Matta & Lamin Ben Kamri Ahmed, 2025. "Unveiling the thermoelectric potential of perthioborate MBS₃(M = Rb;Cs) compounds: insights from DFT calculations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(3), pages 1-13, March.
  • Handle: RePEc:spr:eurphb:v:98:y:2025:i:3:d:10.1140_epjb_s10051-025-00896-4
    DOI: 10.1140/epjb/s10051-025-00896-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-025-00896-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-025-00896-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    2. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    2. Rui Liu & Guangkun Ren & Xing Tan & Yuanhua Lin & Cewen Nan, 2016. "Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases," Energies, MDPI, vol. 9(10), pages 1-7, October.
    3. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    4. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Rahimi, Elnaz & Babapoor, Aziz & Moradi, Gholamreza & Kalantari, Saba & Monazzam Esmaeelpour, Mohammadreza, 2024. "Personal cooling garments and phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    6. Hongkun Lv & Guoneng Li & Youqu Zheng & Jiangen Hu & Jian Li, 2018. "Compact Water-Cooled Thermoelectric Generator (TEG) Based on a Portable Gas Stove," Energies, MDPI, vol. 11(9), pages 1-19, August.
    7. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    9. Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
    10. Chen, Zhiming & Xu, Xiaoqin & Zhang, Jingyang & Yuan, Yueyang & Shen, Ping & Mou, Xinzhu, 2024. "High-efficiency adaptive temperature control for thermoelectric system based on the OBPPID strategy," Energy, Elsevier, vol. 308(C).
    11. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    12. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    13. Li, Guoneng & Fan, Yiqi & Li, Qiangsheng & Zheng, Youqu & Zhao, Dan & Wang, Shifeng & Dong, Sijie & Guo, Wenwen & Tang, Yuanjun, 2025. "A review on micro combustion powered thermoelectric generator: History, state-of-the-art and challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    14. Svyatoslav Yatsyshyn & Oleksandra Hotra & Pylyp Skoropad & Tetiana Bubela & Mykola Mykyichuk & Orest Kochan & Oksana Boyko, 2023. "Investigating Thermoelectric Batteries Based on Nanostructured Materials," Energies, MDPI, vol. 16(9), pages 1-11, May.
    15. Irshad, Kashif & Habib, Khairul & Thirumalaiswamy, Nagarajan & Saha, Bidyut Baran, 2015. "Performance analysis of a thermoelectric air duct system for energy-efficient buildings," Energy, Elsevier, vol. 91(C), pages 1009-1017.
    16. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    17. Kashif Irshad & Abdulmohsen Almalawi & Asif Irshad Khan & Md Mottahir Alam & Md. Hasan Zahir & Amjad Ali, 2020. "An IoT-Based Thermoelectric Air Management Framework for Smart Building Applications: A Case Study for Tropical Climate," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    18. Wang, Xue & Wang, Hongchao & Su, Wenbin & Mehmood, Fahad & Zhai, Jinze & Wang, Teng & Chen, Tingting & Wang, Chunlei, 2019. "Geometric structural design for lead tellurium thermoelectric power generation application," Renewable Energy, Elsevier, vol. 141(C), pages 88-95.
    19. Li, Guoneng & Zheng, Youqu & Hu, Jiangen & Guo, Wenwen, 2019. "Experiments and a simplified theoretical model for a water-cooled, stove-powered thermoelectric generator," Energy, Elsevier, vol. 185(C), pages 437-448.
    20. Alejandro Rincón Casado & Mauricio Larrodé-Díaz & Francisco Fernandez Zacarias & Ricardo Hernández Molina, 2021. "Experimental and Computational Model for a Neonatal Incubator with Thermoelectric Conditioning System," Energies, MDPI, vol. 14(17), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:3:d:10.1140_epjb_s10051-025-00896-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.