IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i11d10.1140_epjb_s10051-022-00446-2.html
   My bibliography  Save this article

Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications

Author

Listed:
  • Cihan Kurkcu

    (Kirsehir Ahi Evran University)

  • Selgin Al

    (Izmir Democracy University)

  • Cagatay Yamcicier

    (Osmaniye Korkut Ata University)

Abstract

First principles calculations have been adopted to explore ground-state and high-pressure properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides for the purpose of solid-state hydrogen storage. Formation enthalpies of materials, structural and mechanical properties, electronic and hydrogen storage properties are computed and examined. The computed formation enthalpies and phonon frequencies of KCaH3 and KSrH3 indicate dynamical stability at 0 GPa. The gravimetric hydrogen densities of KCaH3 and KSrH3 are found to be 3.55 wt% and 2.28 wt%, respectively. Also, the hydrogen desorption temperatures are calculated as 449 K and 394 K for KCaH3 and KSrH3. Elastic constants for each phase and several parameters derived from elastic constants are computed and evaluated, such as bulk and Shear modulus. The B/G ratios of materials depict that both KCaH3 and KSrH3 are brittle materials. The electronic properties show band gaps for both materials at 0 GPa, confirming an insulating nature and as pressure increases the band gap shrinks for KCaH3 and disappears for KSrH3. Graphical abstract Phase transitions of KCaH3 and KSrH3

Suggested Citation

  • Cihan Kurkcu & Selgin Al & Cagatay Yamcicier, 2022. "Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-11, November.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00446-2
    DOI: 10.1140/epjb/s10051-022-00446-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00446-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00446-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim Omer A. Ali & Daniel P. Joubert & Mohammed S. H. Suleiman, 2018. "A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(10), pages 1-8, October.
    2. Pascal Schouwink & Morten B. Ley & Antoine Tissot & Hans Hagemann & Torben R. Jensen & Ľubomír Smrčok & Radovan Černý, 2014. "Structure and properties of complex hydride perovskite materials," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    3. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Moin & Abdul Waheed Anwar & Mehrunisa Babar & Anwar Ali & R. Bilal, 2024. "Computational determination of La substitution in promising XO2 (X = Ce, Zr, Sn): emerging materials for optoelectronic applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(2), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    2. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    3. B. O. Mnisi, 2025. "Density functional theory study on structural, mechanical, electronic, and phonon properties of CrAlB, MoAlB, WAlB, CrAlGa, MoAlGa, and WAlGa ternary compounds," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(3), pages 1-19, March.
    4. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    5. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    6. Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    8. Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
    9. Zhang, Tong & Qadrdan, Meysam & Wu, Jianzhong & Couraud, Benoit & Stringer, Martin & Walker, Sara & Hawkes, Adam & Allahham, Adib & Flynn, David & Pudjianto, Danny & Dodds, Paul & Strbac, Goran, 2025. "A systematic review of modelling methods for studying the integration of hydrogen into energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    10. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    11. Ghaboulian Zare, Sara & Amirmoeini, Kamyar & Bahn, Olivier & Baker, Ryan C. & Mousseau, Normand & Neshat, Najmeh & Trépanier, Martin & Wang, Qianpu, 2025. "The role of hydrogen in integrated assessment models: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    12. Bian, Jiang & Zhang, Xingwang & Zhang, Rui & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2024. "Conceptual design and analysis of a new hydrogen liquefaction process based on heat pump systems," Applied Energy, Elsevier, vol. 374(C).
    13. Cao, Ruifeng & Li, Weiqiang & Chen, Ziqi & Li, Yawei, 2024. "Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer," Energy, Elsevier, vol. 294(C).
    14. Cao, Qiang & Chen, Yuji & Wang, Zhiping & Wang, Miaomiao & Wang, Pengcheng & Ge, Lichun & Li, Peng & Zhao, Qinyu & Wang, Bo & Gan, Zhihua, 2025. "Improving the cooling efficiency of cryo-compressed hydrogen based on the temperature-distributed method in regenerative refrigerators," Energy, Elsevier, vol. 314(C).
    15. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Fragiacomo, Petronilla & Martorelli, Michele & Genovese, Matteo & Piraino, Francesco & Corigliano, Orlando, 2024. "Thermodynamic modelling, testing and sensitive analysis of a directly pressurized hydrogen refuelling process with a compressor," Renewable Energy, Elsevier, vol. 226(C).
    17. Klepp, Georg, 2024. "Modelling activated carbon hydrogen storage tanks using machine learning models," Energy, Elsevier, vol. 306(C).
    18. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    19. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Choi, Yechan & Kim, Mingyu & Kim, Shin Hyuk & Heo, Seongmin, 2025. "Synergy evaluation for joint expansion planning of green hydrogen and renewable electricity supply chains: A South Korea case," Applied Energy, Elsevier, vol. 381(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:11:d:10.1140_epjb_s10051-022-00446-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.