IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v43y2023i4d10.1007_s10669-023-09937-8.html
   My bibliography  Save this article

A self-adaptation-based approach to resilience improvement of complex internets of utility systems

Author

Listed:
  • Luigi Coppolino

    (University of Naples “Parthenope”)

  • Salvatore D’Antonio

    (University of Naples “Parthenope”)

  • Roberto Nardone

    (University of Naples “Parthenope”)

  • Luigi Romano

    (University of Naples “Parthenope”)

Abstract

Resilience improvement of complex internets of utility systems is still an open issue for the current research. Proposed solutions fail to implement an integrated approach to detection, mitigation, and reaction which is able to face both well-known and new, previously unknown cyber-attacks (in particular distributed ones, which constitute one of the most serious and still unresolved threat scenarios affecting networked systems). In this work, we present the conceptual architecture of a novel multi-layer distributed Intrusion Detection and Reaction System based on the Autonomic Communication paradigm. The architecture relies on a self-organizing cooperative overlay network of complementary components that are dynamically and autonomously adapted to face distributed cyberattacks against Industrial Control Systems. The proposed architecture aims at being a guideline for experts and practitioners to address the well-known problem of distributed nature of new types of cyber-attacks, by implementing mechanisms to orchestrate available resources for effective detection and remediation dynamically. A distributed flow monitoring system provides input data to cooperative intrusion detection agents, which allow correlating information from heterogeneous feeds to improve the identification of attacks originating from both the inside and the outside of the monitored network and to support customizable remediation mechanisms.

Suggested Citation

  • Luigi Coppolino & Salvatore D’Antonio & Roberto Nardone & Luigi Romano, 2023. "A self-adaptation-based approach to resilience improvement of complex internets of utility systems," Environment Systems and Decisions, Springer, vol. 43(4), pages 708-720, December.
  • Handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09937-8
    DOI: 10.1007/s10669-023-09937-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-023-09937-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-023-09937-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Riglietti, Gianluca & Alcantara, Patrick & Aguada, Lucila, 2018. "Small and medium enterprises: Analysing the cyber challenge," Cyber Security: A Peer-Reviewed Journal, Henry Stewart Publications, vol. 2(2), pages 163-172, September.
    2. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas, 2019. "Complex approach to assessing resilience of critical infrastructure elements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 125-138.
    3. Yadav, Geeta & Paul, Kolin, 2021. "Architecture and security of SCADA systems: A review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    4. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    2. Oster, Matthew R. & Amburg, Ilya & Chatterjee, Samrat & Eisenberg, Daniel A. & Thomas, Dennis G. & Pan, Feng & Ganguly, Auroop R., 2024. "A tri-level optimization model for interdependent infrastructure network resilience against compound hazard events," International Journal of Critical Infrastructure Protection, Elsevier, vol. 47(C).
    3. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    4. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    5. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    6. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    7. Bravard, Christophe & Charroin, Liza & Touati, Corinne, 2017. "Optimal design and defense of networks under link attacks," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 62-79.
    8. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    9. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.
    10. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    11. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    12. Tibor Sipos & Zsombor Szabó & Mohammed Obaid & Árpád Török, 2023. "Disaster Risk Assessment Scheme—A Road System Survey for Budapest," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    13. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    14. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    15. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Justin Yates & Sujeevraja Sanjeevi, 2012. "Assessing the impact of vulnerability modeling in the protection of critical infrastructure," Journal of Geographical Systems, Springer, vol. 14(4), pages 415-435, October.
    17. Alice Paul & Susan E. Martonosi, 2024. "The all-pairs vitality-maximization (VIMAX) problem," Annals of Operations Research, Springer, vol. 338(2), pages 1019-1048, July.
    18. Edward H. Kaplan, 2012. "OR Forum---Intelligence Operations Research: The 2010 Philip McCord Morse Lecture," Operations Research, INFORMS, vol. 60(6), pages 1297-1309, December.
    19. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Han, Lin & Zhao, Xudong & Chen, Zhilong & Gong, Huadong & Hou, Benwei, 2021. "Assessing resilience of urban lifeline networks to intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09937-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.