IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03446-z.html
   My bibliography  Save this article

Life cycle assessment of residential building in Iran: a case study on construction phase and material impacts

Author

Listed:
  • Saeed Morsali

    (Gazi University)

  • Feriha Yildirim

    (Gazi University)

Abstract

Buildings are a basic requirement for human beings and an essential part of the built environment, with significant environmental impacts. In addition to their complex and diverse material use, buildings are expected to have a long lifespan, typically more than 50 years. This paper aims to evaluate the environmental performance of materials and construction activities for a typical residential building. Life cycle assessment methodology was applied using Simapro©software. A cradle-to-gate analysis was carried out. The results were analyzed based on the Ecoinvent 3.8 database and Eco-Indicator 99. The results show that reinforcing steel (21%) and concrete production (16%) are the most dominant processes, accounting for almost 37% of the overall environmental impact. Transportation also had an overall impact of around 15%. Brick production and use accounted for 11.23% of the overall impact, followed by lime mortar production (11%). Asphalt coating production and use had the 6th highest impact with 9.7% of the overall impact. Ceramic production accounted for 5% of the overall impact, followed by cut stone products with 3.58% of impact. Steel use, plaster mixing, excavation processes, laminate, fiberboard, paint, and glass production and use had around 7% of the overall impact in total. Besides, the resource depletion impact category showed the highest value among the three main impact categories. On the other hand, fossil fuels and respiratory inorganic impact categories were the most affected sub-impact categories among the 11 study impact categories. As material and designing codes, technology, and construction methods differ based on regions and countries, this paper demonstrates the importance of even smaller portions of materials such as Laminate production in the Land use and asphalt felt production in the Fossil fuels impact categories in, especially for countries with insufficient studies and databases for construction activities.

Suggested Citation

  • Saeed Morsali & Feriha Yildirim, 2024. "Life cycle assessment of residential building in Iran: a case study on construction phase and material impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11653-11680, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03446-z
    DOI: 10.1007/s10668-023-03446-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03446-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03446-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory A. Keoleian & Steven Blanchard & Peter Reppe, 2000. "Life‐Cycle Energy, Costs, and Strategies for Improving a Single‐Family House," Journal of Industrial Ecology, Yale University, vol. 4(2), pages 135-156, April.
    2. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    3. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Stephan, André & Stephan, Laurent, 2014. "Reducing the total life cycle energy demand of recent residential buildings in Lebanon," Energy, Elsevier, vol. 74(C), pages 618-637.
    5. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    6. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    7. Xianzheng Gong & Zuoren Nie & Zhihong Wang & Suping Cui & Feng Gao & Tieyong Zuo, 2012. "Life Cycle Energy Consumption and Carbon Dioxide Emission of Residential Building Designs in Beijing," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 576-587, August.
    8. Miguel Brandão & Roland Clift & Annette Cowie & Suzie Greenhalgh, 2014. "The Use of Life Cycle Assessment in the Support of Robust (Climate) Policy Making: Comment on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 461-463, May.
    9. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    10. Bruce E. Dale & Seungdo Kim, 2014. "Can the Predictions of Consequential Life Cycle Assessment Be Tested in the Real World? Comment on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation...”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 466-467, May.
    11. Richard Plevin & Mark Delucchi & Felix Creutzig, 2014. "Response to Comments on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 468-470, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    2. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
    3. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    4. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    5. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
    6. Buchspies, Benedikt & Kaltschmitt, Martin, 2018. "A consequential assessment of changes in greenhouse gas emissions due to the introduction of wheat straw ethanol in the context of European legislation," Applied Energy, Elsevier, vol. 211(C), pages 368-381.
    7. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    8. Arianne Provost‐Savard & Guillaume Majeau‐Bettez, 2024. "Substitution modeling can coherently be used in attributional life cycle assessments," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 410-425, June.
    9. Elżbieta Broniewicz & Karolina Dec, 2022. "Environmental Impact of Demolishing a Steel Structure Design for Disassembly," Energies, MDPI, vol. 15(19), pages 1-16, October.
    10. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    11. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    12. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    13. Saeed Morsali & Feriha Yildirim, 2024. "Environmental impact assessment of red mud utilization in concrete production: a life cycle assessment study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12219-12238, May.
    14. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    15. Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
    16. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).
    17. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    18. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    19. Witcover, Julie & Williams, Robert B., 2017. "Biofuel Tracker: Capacity for Low Carbon Fuel Policies – Assessment through 2018," Institute of Transportation Studies, Working Paper Series qt7mp8765g, Institute of Transportation Studies, UC Davis.
    20. André Stephan & Robert H. Crawford & Victor Bunster & Georgia Warren‐Myers & Sareh Moosavi, 2022. "Towards a multiscale framework for modeling and improving the life cycle environmental performance of built stocks," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1195-1217, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03446-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.