IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i4d10.1007_s10668-023-03157-5.html
   My bibliography  Save this article

Simulation of the effects of climate change, crop pattern change, and developing irrigation systems on the groundwater resources by SWAT, WEAP and MODFLOW models: a case study of Fars province, Iran

Author

Listed:
  • M. K. Shaabani

    (Isfahan University of Technology)

  • J. Abedi-Koupai

    (Isfahan University of Technology)

  • S. S. Eslamian

    (Isfahan University of Technology)

  • S. A. R. Gohari

    (Isfahan University of Technology)

Abstract

The severe shortage of water resources is the most important cause of the uncontrolled abstraction of groundwater resources in semi-arid regions. In this regard, modeling and forecasting groundwater levels can help in the accurate estimation of watershed water consumption and sustainable agricultural development. In the present study, the interaction effect of surface and groundwater using SWAT, WEAP, and MODFLOW models on agricultural water consumption of Kavar plain in Fars province has been evaluated. Also, the simultaneous impact of climate change, increasing the efficiency of irrigation systems, and changing the cultivation pattern to predict the groundwater level in the future were analyzed. For these purposes, first, the changes in crop pattern and type of irrigation systems during the decade 2008 to 2018 were investigated; then different management scenarios were defined to balance the groundwater level. The results of predicting climatic parameters indicate that in all three scenarios of emissions in the next period (2021–2040), the temperature will increase (0.54–1.01 °C) and precipitation will decrease (3–10%). The combination of SWAT and WEAP models with the MODFLOW model showed that by using these models, the interaction behavior of surface water and groundwater, the amount of recharges, and groundwater level can be quantitatively simulated. Also, applying different irrigation scenarios in the models showed that by adjusting the cultivation pattern and improving surface and pressurized irrigation efficiencies, the amount of groundwater abstraction in dry and normal conditions can be reduced by 23 to 42 percent. Therefore, the groundwater level will increase in the next period.

Suggested Citation

  • M. K. Shaabani & J. Abedi-Koupai & S. S. Eslamian & S. A. R. Gohari, 2024. "Simulation of the effects of climate change, crop pattern change, and developing irrigation systems on the groundwater resources by SWAT, WEAP and MODFLOW models: a case study of Fars province, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 10485-10511, April.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03157-5
    DOI: 10.1007/s10668-023-03157-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03157-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03157-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawan S. Wable & V. M. Chowdary & S. N. Panda & Sirisha Adamala & C. S. Jha, 2021. "Potential and net recharge assessment in paddy dominated Hirakud irrigation command of eastern India using water balance and geospatial approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10869-10891, July.
    2. Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
    3. S. Khajeh & Sh. Paimozd & M. Moghaddasi, 2017. "Assessing the Impact of Climate Changes on Hydrological Drought Based on Reservoir Performance Indices (Case Study: ZayandehRud River Basin, Iran)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2595-2610, July.
    4. Farhadi, Saber & Nikoo, Mohammad Reza & Rakhshandehroo, Gholam Reza & Akhbari, Masih & Alizadeh, Mohammad Reza, 2016. "An agent-based-nash modeling framework for sustainable groundwater management: A case study," Agricultural Water Management, Elsevier, vol. 177(C), pages 348-358.
    5. Mustafa Goodarzi & Jahangir Abedi-Koupai & Manouchehr Heidarpour & Hamid Safavi, 2016. "Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 133-148, January.
    6. Sepaskhah, Ali Reza & Fooladmand, Hamid Reza, 2004. "A computer model for design of microcatchment water harvesting systems for rain-fed vineyard," Agricultural Water Management, Elsevier, vol. 64(3), pages 213-232, February.
    7. Inge E. M. Graaf & Tom Gleeson & L. P. H. (Rens) van Beek & Edwin H. Sutanudjaja & Marc F. P. Bierkens, 2019. "Environmental flow limits to global groundwater pumping," Nature, Nature, vol. 574(7776), pages 90-94, October.
    8. Mustafa Goodarzi & Jahangir Abedi-Koupai & Manouchehr Heidarpour & Hamid Reza Safavi, 2016. "Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 133-148, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelle Nardelli Baptista & Ricardo Valcarcel & Felipe Araujo Mateus & William Soares Medeiros & Fernando Canto Andrade, 2017. "Impact of Urbanization on the Hydrodynamics of a Water Table in a Floodplain with High Potential for Renaturation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4091-4102, October.
    2. Abdelaziz A. Gohar & Adrian Cashman, 2018. "The Economic Value of Groundwater Irrigation for Food Security Under Climate Change: Implication of Representative Concentration Pathway Climate Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3903-3918, September.
    3. Hydar Ebrahimi & Reza Ghazavi & Haji Karimi, 2016. "Estimation of Groundwater Recharge from the Rainfall and Irrigation in an Arid Environment Using Inverse Modeling Approach and RS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1939-1951, April.
    4. Previati, M. & Bevilacqua, I. & Canone, D. & Ferraris, S. & Haverkamp, R., 2010. "Evaluation of soil water storage efficiency for rainfall harvesting on hillslope micro-basins built using time domain reflectometry measurements," Agricultural Water Management, Elsevier, vol. 97(3), pages 449-456, March.
    5. Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
    6. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    7. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    9. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.
    10. Khadije Norouzi Khatiri & Mohammad Hossein Niksokhan & Amin Sarang & Asghar Kamali, 2020. "Coupled Simulation-Optimization Model for the Management of Groundwater Resources by Considering Uncertainty and Conflict Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3585-3608, September.
    11. Ajay Gajanan Bhave & Neha Mittal & Ashok Mishra & Narendra Singh Raghuwanshi, 2016. "Integrated Assessment of no-Regret Climate Change Adaptation Options for Reservoir Catchment and Command Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1001-1018, February.
    12. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Zhao, Qianzuo & Jiang, Yanan & Wang, Qianyu & Xu, Fenfang, 2024. "A distributed simulation-optimization framework for many-objective water resources allocation in canal-well combined irrigation district under diverse supply and demand scenarios," Agricultural Water Management, Elsevier, vol. 305(C).
    14. Mehrdad Ghorbani Mooselu & Mohammad Reza Nikoo & Nooshin Bakhtiari Rayani & Azizallah Izady, 2019. "Fuzzy Multi-Objective Simulation-Optimization of Stepped Spillways Considering Flood Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2261-2275, May.
    15. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    16. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    17. Ruby Moynihan & Bjørn-Oliver Magsig, 2020. "The role of international regimes and courts in clarifying prevention of harm in freshwater and marine environmental protection," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(4), pages 649-666, December.
    18. G. J. Pronk & S. F. Stofberg & T. C. G. W. Dooren & M. M. L. Dingemans & J. Frijns & N. E. Koeman-Stein & P. W. M. H. Smeets & R. P. Bartholomeus, 2021. "Increasing Water System Robustness in the Netherlands: Potential of Cross-Sectoral Water Reuse," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3721-3735, September.
    19. Guobin Fu & Stephanie R. Clark & Dennis Gonzalez & Rodrigo Rojas & Sreekanth Janardhanan, 2023. "Spatial and Temporal Patterns of Groundwater Levels: A Case Study of Alluvial Aquifers in the Murray–Darling Basin, Australia," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
    20. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03157-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.