IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i13d10.1007_s11269-021-02957-6.html
   My bibliography  Save this article

Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping

Author

Listed:
  • Duong Hai Ha

    (Institute for Water and Environment)

  • Phong Tung Nguyen

    (Vietnam Academy for Water Resources)

  • Romulus Costache

    (Danube Delta National Institute for Research and Development
    Transilvania University of Brasov
    Research Institute of the University of Bucharest
    National Institute of Hydrology and Water Management)

  • Nadhir Al-Ansari

    (Lulea University of Technology)

  • Tran Phong

    (Vietnam Academy of Sciences and Technology)

  • Huu Duy Nguyen

    (VNU University of Science, Vietnam National University)

  • Mahdis Amiri

    (Gorgan University of Agricultural Sciences & Natural Resources)

  • Rohit Sharma

    (SRM Institute of Science and Technology)

  • Indra Prakash

    (DDG (R) Geological Survey of India)

  • Hiep Le

    (University of Transport Technology)

  • Hanh Bich Thi Nguyen

    (University of Transport Technology)

  • Binh Thai Pham

    (University of Transport Technology)

Abstract

In this study, the AdaBoost, MultiBoost and RealAdaBoost methods were combined with the Quadratic Discriminant Analysis method to develop three new GIS-based Machine Learning ensemble models, i.e., ABQDA, MBQDA, and RABQDA for groundwater potential mapping in the Dak Nong Province, Vietnam. In total, 227 groundwater wells and 12 conditioning factors (infiltration, rainfall, river density, topographic wetness index, sediment transport index, stream power index, elevation, aspect, curvature, slope, soil, and land use) were used for this study. Performance of the models was evaluated using the Area Under the Receiver Operating Characteristics Curve AUC (AUC) and several other performance metrics. The results showed that the ABQDA model that achieved AUC = 0.741 was superior to the other models in producing an accurate map of groundwater potential for the Dak Nong Province. The models and potential maps produced here can help policymakers and water resources managers to preserve an optimal exploit from these vital resources.

Suggested Citation

  • Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02957-6
    DOI: 10.1007/s11269-021-02957-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02957-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02957-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    2. Inge E. M. Graaf & Tom Gleeson & L. P. H. (Rens) van Beek & Edwin H. Sutanudjaja & Marc F. P. Bierkens, 2019. "Environmental flow limits to global groundwater pumping," Nature, Nature, vol. 574(7776), pages 90-94, October.
    3. W. Botzen & J. Aerts & J. Bergh, 2013. "Individual preferences for reducing flood risk to near zero through elevation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 229-244, February.
    4. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.
    5. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.
    6. Adriana Monteiro da Costa & Hugo Henrique Cardoso de Salis & João Hebert Moreira Viana & Fernando António Leal Pacheco, 2019. "Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    7. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    9. Deepesh Machiwal & Madan Jha & Bimal Mal, 2011. "Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1359-1386, March.
    10. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    11. Alireza Arabameri & Aman Arora & Subodh Chandra Pal & Satarupa Mitra & Asish Saha & Omid Asadi Nalivan & Somayeh Panahi & Hossein Moayedi, 2021. "K-Fold and State-of-the-Art Metaheuristic Machine Learning Approaches for Groundwater Potential Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1837-1869, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Pazhuparambil Jayarajan Sajil Kumar & Lakshmanan Elango & Michael Schneider, 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    3. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    4. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    5. Uday Mandal & Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Sudhindra N. Panda & Amlanjyoti Kar & Prasanta K. Mishra, 2016. "Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4293-4310, September.
    6. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    7. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    8. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    9. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    10. Xue Wang & Kun Tan & Kailei Xu & Yu Chen & Jianwei Ding, 2019. "Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
    11. Biswajit Das & Subodh Chandra Pal, 2020. "Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5905-5923, August.
    12. Ting Liu & Sherong Zhang & Chao Wang, 2021. "A BIM-Based Safety Management Framework for Operation and Maintenance in Water Diversion Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1619-1635, March.
    13. Xinyang Liu & Yu Wang, 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    14. Tarun Kumar & Amar Gautam & Tinu Kumar, 2014. "Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4449-4466, October.
    15. Roshani Singh & Aditya Kumar Anand & Pallavi Banerjee Chattopadhyay, 2022. "Investigation of Topographical Controls on the Groundwater Potential Zone in a Hilly Watershed Using a Geospatial and Geophysical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5313-5333, October.
    16. Imran Jamali & Ulla Mörtberg & Bo Olofsson & Muhammad Shafique, 2014. "A Spatial Multi-Criteria Analysis Approach for Locating Suitable Sites for Construction of Subsurface Dams in Northern Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5157-5174, November.
    17. Veysel Aslan & Recep Çelik, 2021. "Integrated GIS-Based Multi-Criteria Analysis for Groundwater Potential Mapping in the Euphrates’s Sub-Basin, Harran Basin, Turkey," Sustainability, MDPI, vol. 13(13), pages 1-16, July.
    18. Ciro Figueiredo & Caroline Mota, 2019. "Learning Preferences in a Spatial Multiple Criteria Decision Approach: An Application in Public Security Planning," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1403-1432, July.
    19. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    20. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02957-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.