IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1830-d742717.html
   My bibliography  Save this article

GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India

Author

Listed:
  • Pazhuparambil Jayarajan Sajil Kumar

    (Hydrogeology Group, Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany)

  • Lakshmanan Elango

    (Department of Geology, Anna University, Chennai 600025, India)

  • Michael Schneider

    (Hydrogeology Group, Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany)

Abstract

Groundwater depletion is one of the most critical concerns for users and policymakers. Identifying groundwater potential (low to high) helps properly plan the available groundwater resource. This study has used the possibilities of a geographical information system (GIS), remote sensing and, of course, field data to delineate the groundwater potential zones in the Chennai River Basin (CRB). Thematic layers generated for eleven controlling factors, such as geology, water level, drainage, soil, lineament, rainfall, land use, slope, aspect, geomorphology, and depth to bedrock, were brought into the GIS environment. Then, appropriate weightage was given to each layer using a multi-criteria decision-making technique, namely, the analytic hierarchical process (AHP). A groundwater potential map is generated using weighted overlay analysis, with the following five classes: very poor, poor, moderate, good, and very good. The results were comparable to the actual specific yield data from the field and accuracy was 78.43%. Thus, AHP-aided GIS–RS mapping is a useful tool in groundwater prospecting in this region of the world.

Suggested Citation

  • Pazhuparambil Jayarajan Sajil Kumar & Lakshmanan Elango & Michael Schneider, 2022. "GIS and AHP Based Groundwater Potential Zones Delineation in Chennai River Basin (CRB), India," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1830-:d:742717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    2. Lu, Shibao & Lian, Zhiduan & Sun, Huaping & Wu, Xiaohe & Bai, Xiao & Wang, Congcong, 2021. "Simulating trans-boundary watershed water resources conflict," Resources Policy, Elsevier, vol. 73(C).
    3. Niladri Das & Sutapa Mukhopadhyay, 2020. "Application of multi-criteria decision making technique for the assessment of groundwater potential zones: a study on Birbhum district, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 931-955, February.
    4. Deepesh Machiwal & Madan Jha & Bimal Mal, 2011. "Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1359-1386, March.
    5. Lu, Shibao & Sun, Huaping & Sun, Dongying & Guo, Min & Bai, Xiao, 2020. "Assessment on reservoir flood resources utilization of Ankang Reservoir, China," Resources Policy, Elsevier, vol. 68(C).
    6. Contreras, Francisco & Hanaki, Keisuke & Aramaki, Toshiya & Connors, Stephen, 2008. "Application of analytical hierarchy process to analyze stakeholders preferences for municipal solid waste management plans, Boston, USA," Resources, Conservation & Recycling, Elsevier, vol. 52(7), pages 979-991.
    7. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    3. Sangita Dey & U. K. Shukla & P. Mehrishi & R. K. Mall, 2021. "Appraisal of groundwater potentiality of multilayer alluvial aquifers of the Varuna river basin, India, using two concurrent methods of MCDM," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17558-17589, December.
    4. Hesham Morgan & Hussien M. Hussien & Ahmed Madani & Tamer Nassar, 2022. "Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    5. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    6. Xue Wang & Kun Tan & Kailei Xu & Yu Chen & Jianwei Ding, 2019. "Quantitative Evaluation of the Eco-Environment in a Coalfield Based on Multi-Temporal Remote Sensing Imagery: A Case Study of Yuxian, China," IJERPH, MDPI, vol. 16(3), pages 1-18, February.
    7. Lu, Shibao & Lu, Wenjing & Shao, Wei & Xue, Yangang & Taghizadeh-Hesary, Farhad, 2021. "The transboundary ecological compensation construction based on pollution rights: Ways to keep the natural resources sustained," Resources Policy, Elsevier, vol. 74(C).
    8. Ting Liu & Sherong Zhang & Chao Wang, 2021. "A BIM-Based Safety Management Framework for Operation and Maintenance in Water Diversion Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1619-1635, March.
    9. Xinyang Liu & Yu Wang, 2022. "Identification and Assessment of Groundwater and Soil Contamination from an Informal Landfill Site," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    10. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    11. Roshani Singh & Aditya Kumar Anand & Pallavi Banerjee Chattopadhyay, 2022. "Investigation of Topographical Controls on the Groundwater Potential Zone in a Hilly Watershed Using a Geospatial and Geophysical Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5313-5333, October.
    12. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    13. Veysel Aslan & Recep Çelik, 2021. "Integrated GIS-Based Multi-Criteria Analysis for Groundwater Potential Mapping in the Euphrates’s Sub-Basin, Harran Basin, Turkey," Sustainability, MDPI, vol. 13(13), pages 1-16, July.
    14. Ciro Figueiredo & Caroline Mota, 2019. "Learning Preferences in a Spatial Multiple Criteria Decision Approach: An Application in Public Security Planning," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1403-1432, July.
    15. Uday Mandal & Satiprasad Sahoo & Selva Balaji Munusamy & Anirban Dhar & Sudhindra N. Panda & Amlanjyoti Kar & Prasanta K. Mishra, 2016. "Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4293-4310, September.
    16. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    17. Amirhosein Mosavi & Farzaneh Sajedi Hosseini & Bahram Choubin & Massoud Goodarzi & Adrienn A. Dineva & Elham Rafiei Sardooi, 2021. "Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 23-37, January.
    18. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    19. Soumik Bhattacharya & Swarupa Das & Sandipan Das & Mahesh Kalashetty & Sumedh R. Warghat, 2021. "An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 495-510, January.
    20. Mónica de Castro-Pardo & Pascual Fernández Martínez & Amelia Pérez Zabaleta & João C. Azevedo, 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services," Land, MDPI, vol. 10(5), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1830-:d:742717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.