Development of Indian motorcycle driving cycles, evaluation for fuel economy and emissions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10668-023-02997-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ntziachristos, L. & Mellios, G. & Tsokolis, D. & Keller, M. & Hausberger, S. & Ligterink, N.E. & Dilara, P., 2014. "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, Elsevier, vol. 67(C), pages 403-411.
- Triluck Kusalaphirom & Thaned Satiennam & Wichuda Satiennam & Atthapol Seedam, 2022. "Development of a Real-World Eco-Driving Cycle for Motorcycles," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
- José Ignacio Huertas & Luis Felipe Quirama & Michael Giraldo & Jenny Díaz, 2019. "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, MDPI, vol. 12(4), pages 1-15, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
- Yu, Rujie & Ren, Huanhuan & Liu, Yong & Yu, Biying, 2021. "Gap between on-road and official fuel efficiency of passenger vehicles in China," Energy Policy, Elsevier, vol. 152(C).
- Zacharof, Nikiforos & Tietge, Uwe & Franco, Vicente & Mock, Peter, 2016. "Type approval and real-world CO2 and NOx emissions from EU light commercial vehicles," Energy Policy, Elsevier, vol. 97(C), pages 540-548.
- Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
- Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
- Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
- Fan, Pengfei & Yin, Hang & Lu, Hongyu & Wu, Yizheng & Zhai, Zhiqiang & Yu, Lei & Song, Guohua, 2023. "Which factor contributes more to the fuel consumption gap between in-laboratory vs. real-world driving conditions? An independent component analysis," Energy Policy, Elsevier, vol. 182(C).
- Greene, David L. & Khattak, Asad J. & Liu, Jun & Wang, Xin & Hopson, Janet L. & Goeltz, Richard, 2017. "What is the evidence concerning the gap between on-road and Environmental Protection Agency fuel economy ratings?," Transport Policy, Elsevier, vol. 53(C), pages 146-160.
- Tietge, Uwe & Mock, Peter & Franco, Vicente & Zacharof, Nikiforos, 2017. "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, Elsevier, vol. 103(C), pages 212-222.
- José Ignacio Huertas & Luis Felipe Quirama & Michael Giraldo & Jenny Díaz, 2019. "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, MDPI, vol. 12(4), pages 1-15, February.
- Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
- Bishop, Justin D.K. & Molden, N. & Boies, Adam M, 2019. "Using portable emissions measurement systems (PEMS) to derive more accurate estimates of fuel use and nitrogen oxides emissions from modern Euro 6 passenger cars under real-world driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 942-973.
- Gao, Sichen & Zong, Yuhua & Ju, Fei & Wang, Qun & Huo, Weiwei & Wang, Liangmo & Wang, Tao, 2024. "Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving," Energy, Elsevier, vol. 304(C).
- Li Zhao & Kun Li & Wu Zhao & Han-Chen Ke & Zhen Wang, 2022. "A Sticky Sampling and Markov State Transition Matrix Based Driving Cycle Construction Method for EV," Energies, MDPI, vol. 15(3), pages 1-19, January.
- Craglia, Matteo & Cullen, Jonathan, 2019. "Do technical improvements lead to real efficiency gains? Disaggregating changes in transport energy intensity," Energy Policy, Elsevier, vol. 134(C).
- Malina, Christiane, 2016. "The environmental impact of vehicle circulation tax reform in Germany," CAWM Discussion Papers 86, University of Münster, Münster Center for Economic Policy (MEP).
- Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
- Tsokolis, D. & Tsiakmakis, S. & Dimaratos, A. & Fontaras, G. & Pistikopoulos, P. & Ciuffo, B. & Samaras, Z., 2016. "Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol," Applied Energy, Elsevier, vol. 179(C), pages 1152-1165.
- Triantafyllopoulos, Georgios & Kontses, Anastasios & Tsokolis, Dimitrios & Ntziachristos, Leonidas & Samaras, Zissis, 2017. "Potential of energy efficiency technologies in reducing vehicle consumption under type approval and real world conditions," Energy, Elsevier, vol. 140(P1), pages 365-373.
- Guilherme Medeiros Soares de Andrade & Fernando Wesley Cavalcanti de Araújo & Maurício Pereira Magalhães de Novaes Santos & Fabio Santana Magnani, 2020. "Standardized Comparison of 40 Local Driving Cycles: Energy and Kinematics," Energies, MDPI, vol. 13(20), pages 1-20, October.
More about this item
Keywords
Environment; Emissions; Motorcycles; Real-world driving cycle; Standard driving cycle; Micro-trips; Fuel consumption; Gasoline; And fuel economy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-02997-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.