Impact of rapid Arctic sea ice decline on China's crop yield under global warming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10668-022-02757-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- James A. Screen & Ian Simmonds, 2014. "Amplified mid-latitude planetary waves favour particular regional weather extremes," Nature Climate Change, Nature, vol. 4(8), pages 704-709, August.
- Bob Dickson, 1999. "All change in the Arctic," Nature, Nature, vol. 397(6718), pages 389-391, February.
- Zhijuan Liu & Xiaoguang Yang & Fu Chen & Enli Wang, 2013. "The effects of past climate change on the northern limits of maize planting in Northeast China," Climatic Change, Springer, vol. 117(4), pages 891-902, April.
- Chad W. Thackeray & Alex Hall, 2019. "An emergent constraint on future Arctic sea-ice albedo feedback," Nature Climate Change, Nature, vol. 9(12), pages 972-978, December.
- Pin Wang & Zhao Zhang & Xiao Song & Yi Chen & Xing Wei & Peijun Shi & Fulu Tao, 2014. "Temperature variations and rice yields in China: historical contributions and future trends," Climatic Change, Springer, vol. 124(4), pages 777-789, June.
- James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jennifer A. Francis & Stephen J. Vavrus & Judah Cohen, 2017. "Amplified Arctic warming and mid‐latitude weather: new perspectives on emerging connections," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(5), September.
- Wenyu Zhou & L. Ruby Leung & Shang-Ping Xie & Jian Lu, 2024. "An analytic theory for the degree of Arctic Amplification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Yu Yueyue & Yang Wenwen & Zhang Lingli & Guan Zhaoyong & Yang Qinlan & Hu Muxin & Qiu Wentian & Wang Jingyi, 2023. "Region-dependent meteorological conditions for the winter cold hazards with and without precipitation in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2673-2698, February.
- Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
- Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
- Jin Huang & Yadong Lei & Fangmin Zhang & Zhenghua Hu, 2017. "Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 661-672, August.
- Chuya Wang & Minghu Ding & Yuande Yang & Ting Wei & Tingfeng Dou, 2022. "Risk Assessment of Ship Navigation in the Northwest Passage: Historical and Projection," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
- Łupikasza Ewa B. & Małarzewski Łukasz & Pham Quoc B., 2024. "The Impact of Circulation Types and their Changing Thermal Properties on the Probability of Days with Snowfall and Rainfall in Poland, 1966–2020," Quaestiones Geographicae, Sciendo, vol. 43(3), pages 47-64.
- Diebold, Francis X. & Rudebusch, Glenn D., 2022.
"Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
- Francis X. Diebold & Glenn D. Rudebusch, 2019. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," PIER Working Paper Archive 20-001, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Glenn D. Rudebusch, 2020. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," NBER Working Papers 28228, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Glenn D. Rudebusch, 2019. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," Papers 1912.10774, arXiv.org, revised Jul 2021.
- Francis X. Diebold & Glenn D. Rudebusch, 2020. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," Working Paper Series 2020-02, Federal Reserve Bank of San Francisco.
- Elizabeth G. Hanna & Peter W. Tait, 2015. "Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming," IJERPH, MDPI, vol. 12(7), pages 1-41, July.
- Huang, Yihang & Liu, Zhengjia, 2024. "Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit," Land Use Policy, Elsevier, vol. 146(C).
- Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
- Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
- Dang, Yongcai & Qin, Lijie & Huang, Lirong & Wang, Jianqin & Li, Bo & He, Hongshi, 2022. "Water footprint of rain-fed maize in different growth stages and associated climatic driving forces in Northeast China," Agricultural Water Management, Elsevier, vol. 263(C).
- Xiujuan Yang & Jiying Sun & Julin Gao & Shuaishuai Qiao & Baolin Zhang & Haizhu Bao & Xinwei Feng & Songyu Wang, 2021. "Effects of Climate Change on Cultivation Patterns and Climate Suitability of Spring Maize in Inner Mongolia," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
- Liangying Zeng & Yao Ha & Chuanfeng Zhao & Haixia Dai & Yimin Zhu & Yijia Hu & Xiaoyu Zhu & Zhiyuan Ding & Yudi Liu & Zhong Zhong, 2024. "Tropical cyclone activity over western North Pacific favors Arctic sea ice increase," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Brock, W. & Xepapadeas, A., 2017.
"Climate change policy under polar amplification,"
European Economic Review, Elsevier, vol. 99(C), pages 93-112.
- Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 94(C), pages 263-282.
- William Brock & Anastasios Xepapadeas, 2016. "Climate Change Policy under Polar Amplification," DEOS Working Papers 1601, Athens University of Economics and Business.
- Brock, W. & Xepapadeas, A., 2016. "Climate Change Policy under Polar Amplification," MITP: Mitigation, Innovation and Transformation Pathways 232717, Fondazione Eni Enrico Mattei (FEEM).
- W. Brock & A. Xepapadeas, 2016. "Climate Change Policy under Polar Amplification," Working Papers 2016.19, Fondazione Eni Enrico Mattei.
More about this item
Keywords
Arctic sea ice; Arctic Oscillation (AO); Crop yield; Nonlinear multiple regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02757-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.