IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i7d10.1007_s10668-022-02353-z.html
   My bibliography  Save this article

Diverse spillover effects of COVID-19 control measures on air quality improvement: evidence from typical Chinese cities

Author

Listed:
  • Laijun Zhao

    (University of Shanghai for Science and Technology)

  • Yu Wang

    (University of Shanghai for Science and Technology)

  • Honghao Zhang

    (University of Shanghai for Science and Technology)

  • Ying Qian

    (University of Shanghai for Science and Technology)

  • Pingle Yang

    (University of Shanghai for Science and Technology)

  • Lixin Zhou

    (University of Shanghai for Science and Technology)

Abstract

The COVID-19 prevention and control measures are taken by China’s government, especially traffic restrictions and production suspension, had spillover effects on air quality improvement. These effects differed among cities, but these differences have not been adequately studied. To provide more knowledge, we studied the air quality index (AQI) and five air pollutants (PM2.5, PM10, SO2, NO2, and O3) before and after the COVID-19 outbreak in Shanghai, Wuhan, and Tangshan. The pollution data from two types of monitoring stations (traffic and non-traffic stations) were separately compared and evaluated. We used monitoring data from the traffic stations to study the emission reduction caused by traffic restrictions. Based on monitoring data from the non-traffic stations, we established a difference-in-difference model to study the emission reduction caused by production suspension. The COVID-19 control measures reduced AQI and the concentrations of all pollutants except O3 (which increased greatly), but the magnitude of the changes differed among the three cities. The control measures improved air quality most in Wuhan, followed by Shanghai and then Tangshan. We investigated the reasons for these differences and found that differences in the characteristics of these three types of cities could explain these differences in spillover effects. Understanding these differences could provide some guidance and support for formulating differentiated air pollution control measures in different cities. For example, whole-process emission reduction technology should be adopted in cities with the concentrated distribution of continuous process enterprises, whereas vehicles that use cleaner energy and public transport should be vigorously promoted in cities with high traffic development level.

Suggested Citation

  • Laijun Zhao & Yu Wang & Honghao Zhang & Ying Qian & Pingle Yang & Lixin Zhou, 2023. "Diverse spillover effects of COVID-19 control measures on air quality improvement: evidence from typical Chinese cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7075-7099, July.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:7:d:10.1007_s10668-022-02353-z
    DOI: 10.1007/s10668-022-02353-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02353-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02353-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junfeng & Xu, Xiaoya & Wang, Shimeng & He, Shutong & He, Pan, 2021. "Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China," Applied Energy, Elsevier, vol. 282(PA).
    2. Siyu Chen & Hong Chi, 2021. "Analysis of the Environmental Effects of the Clean Heating Policy in Northern China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    3. Tuo Zhang & Maogang Tang, 2021. "The Impact of the COVID-19 Pandemic on Ambient Air Quality in China: A Quasi-Difference-in-Difference Approach," IJERPH, MDPI, vol. 18(7), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyuan Wang & Ju Wang & Chunsheng Fang, 2020. "Assessing the Impact of Lockdown on Atmospheric Ozone Pollution Amid the First Half of 2020 in Shenyang, China," IJERPH, MDPI, vol. 17(23), pages 1-23, December.
    2. Xialing Sun & Rui Zhang & Geyi Wang, 2022. "Spatial-Temporal Evolution of Health Impact and Economic Loss upon Exposure to PM 2.5 in China," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    3. Voytenkov, Valentin & Demidova, Olga, 2023. "Impact of COVID-19 on household consumption in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 72, pages 73-99.
    4. Xin Xu & Shupei Huang & Feng An & Ze Wang, 2022. "Changes in Air Quality during the Period of COVID-19 in China," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    5. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    6. Muzeyyen Anil Senyel Kurkcuoglu & Beyda Nur Zengin, 2021. "Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    7. Ana Catarina T. Silva & Pedro T. B. S. Branco & Sofia I. V. Sousa, 2022. "Impact of COVID-19 Pandemic on Air Quality: A Systematic Review," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    8. Xiaoyang Hou & Shuai Zhong & Jian’an Zhao, 2022. "A Critical Review on Decarbonizing Heating in China: Pathway Exploration for Technology with Multi-Sector Applications," Energies, MDPI, vol. 15(3), pages 1-23, February.
    9. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    10. Martijn J. Burger & Ruut Veenhoven, 2023. "Editorial: Special Issue on Subjective Well-being and Mental Health in the Early Days of COVID-19," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(1), pages 1-8, February.
    11. Patrycja Bąk, 2022. "Good Practices to Counteract Epidemic Emergency in Mining Companies in Poland," Energies, MDPI, vol. 15(15), pages 1-12, July.
    12. Lin, Weiran & He, Qiuqin & Xiao, Yuan & Yang, Jingwen, 2023. "Do city lockdowns effectively reduce air pollution?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:7:d:10.1007_s10668-022-02353-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.