IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00950-4.html
   My bibliography  Save this article

An analysis of urban form factors driving Urban Heat Island: the case of Izmir

Author

Listed:
  • Umut Erdem

    (Dokuz Eylül University
    Utrecht University)

  • K. Mert Cubukcu

    (Dokuz Eylül University)

  • Ayyoob Sharifi

    (Hiroshima University
    Hiroshima University
    Network for Education and Research on Peace and Sustainability (NERPS))

Abstract

The Urban Heat Island (UHI) effect is a common phenomenon in many cities across the world that has significant socioeconomic and environmental ramifications. Recognizing the significance of taking measures to mitigate the UHI effect, a vast body of research has been published, over the past few decades, on this topic. Existing research covers various climatic contexts and has significantly improved our understanding of the dynamics of the UHI. However, there is a lack of research on the potential linkages between the physical form of urban streets and the UHI effect. The results of such research can be used to develop planning and design strategies for achieving climate-resilient urban development. As a step toward filling this gap, in this study, we use a mixed-methods approach, involving graph theory and spatial statistics to examine the relationship between the UHI effect and selected urban form measures such as street network connectivity, street network centrality, and land-use in Izmir, Turkey. Results show that the UHI effect is more intense in areas with higher levels of street network centrality. On the contrary, higher connectivity of the urban street network is associated with lower levels of the UHI effect.

Suggested Citation

  • Umut Erdem & K. Mert Cubukcu & Ayyoob Sharifi, 2021. "An analysis of urban form factors driving Urban Heat Island: the case of Izmir," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7835-7859, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00950-4
    DOI: 10.1007/s10668-020-00950-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00950-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00950-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veysi, Shadman & Naseri, Abd Ali & Hamzeh, Saeid & Bartholomeus, Harm, 2017. "A satellite based crop water stress index for irrigation scheduling in sugarcane fields," Agricultural Water Management, Elsevier, vol. 189(C), pages 70-86.
    2. Umut ERDEM & Dimitrios TSIOTAS & K. Mert CUBUKCU, 2019. "Population Dynamics In Network Topology: The Case Of Air Transport Network In Turkey," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 11(2), pages 5-20, June.
    3. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    4. Umut Erdem, 2016. "Regional Human Capital Distribution And Disparities In Turkey," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 28(1), pages 16-31, March.
    5. Sharifi, Ayyoob & Yamagata, Yoshiki, 2015. "Roof ponds as passive heating and cooling systems: A systematic review," Applied Energy, Elsevier, vol. 160(C), pages 336-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    2. Magalie Técher & Hassan Ait Haddou & Rahim Aguejdad, 2023. "Urban Heat Island’s Vulnerability Assessment by Integrating Urban Planning Policies: A Case Study of Montpellier Méditerranée Metropolitan Area, France," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    3. Shahfahad & Swapan Talukdar & Mohd. Rihan & Hoang Thi Hang & Sunil Bhaskaran & Atiqur Rahman, 2022. "Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3762-3790, March.
    4. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    2. Burhan Can Karahasan & Firat Bilgel, 2018. "Economic Geography, Growth Dynamics and Human Capital Accumulation in Turkey: Evidence from Regional and Micro Data," Working Papers 1233, Economic Research Forum, revised 10 Oct 2018.
    3. Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães & Camilo Rey Laureto, 2009. "Clusterização Hierárquica Espacial com Atributos Binários," Discussion Papers 1428, Instituto de Pesquisa Econômica Aplicada - IPEA.
    4. Lavado, Rouselle F. & Barrios, Erniel B., 2010. "Spatial Stochastic Frontier Models," Discussion Papers DP 2010-08, Philippine Institute for Development Studies.
    5. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    6. David Brasington & Don Haurin, 2005. "Capitalization of Parent, School, and Peer Group Components of School Quality into House Price," Departmental Working Papers 2005-04, Department of Economics, Louisiana State University.
    7. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
    8. Luisa Alamá-Sabater & Laura Márquez-Ramos & Celestino Suárez-Burguet & J. Miguel Navarro-Azorín, 2012. "Interregional Trade and Transport Connectivity. An Analysis of Spatial Dependence," Working Papers 2012/20, Economics Department, Universitat Jaume I, Castellón (Spain).
    9. Burhan Can Karahasan & Fırat Bilgel, 2020. "Market access and regional dispersion of human capital accumulation in Turkey," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 1073-1101, August.
    10. Zeynab Emdadi & Nilofar Asim & Mohd Ambar Yarmo & Roslinda Shamsudin & Masita Mohammad & Kamaruzaman Sopian, 2016. "Green Material Prospects for Passive Evaporative Cooling Systems: Geopolymers," Energies, MDPI, vol. 9(8), pages 1-19, July.
    11. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    12. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    13. Chan, Lok Shun, 2023. "Numerical study on the thermal performance of water flow window fed with air-conditioning condensate," Energy, Elsevier, vol. 263(PB).
    14. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    15. Raja Chakir & Olivier Parent, 2009. "Determinants of land use changes: A spatial multinomial probit approach," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 327-344, June.
    16. Brasington, David M. & Haurin, Donald R., 2009. "Parents, peers, or school inputs: Which components of school outcomes are capitalized into house value?," Regional Science and Urban Economics, Elsevier, vol. 39(5), pages 523-529, September.
    17. Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães, 2009. "Clusterização Hierárquica Espacial," Discussion Papers 1427, Instituto de Pesquisa Econômica Aplicada - IPEA.
    18. Burhan Can Karahasan & Fırat Bilgel, 2021. "The Topography and Sources of Multidimensional Poverty in Turkey," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 413-445, April.
    19. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    20. Lalehzari, Reza & Kerachian, Reza, 2020. "Developing a framework for daily common pool groundwater allocation to demands in agricultural regions," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00950-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.