IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v13y2011i2p403-422.html
   My bibliography  Save this article

Modeling non-point source pollution from rice farming in the Thachin River Basin

Author

Listed:

Abstract

No abstract is available for this item.

Suggested Citation

  • Monika Schaffner & Hans-Peter Bader & Ruth Scheidegger, 2011. "Modeling non-point source pollution from rice farming in the Thachin River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 403-422, April.
  • Handle: RePEc:spr:endesu:v:13:y:2011:i:2:p:403-422
    DOI: 10.1007/s10668-010-9268-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10668-010-9268-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10668-010-9268-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molle, F. & Chompadist, C. & Srijantr, T. & Keawkulaya, J., 2001. "Dry-season water allocation and management in the Chao Phraya Delta," IWMI Books, Reports H028660, International Water Management Institute.
    2. Pfister, F. & Bader, H.-P. & Scheidegger, R. & Baccini, P., 2005. "Dynamic modelling of resource management for farming systems," Agricultural Systems, Elsevier, vol. 86(1), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    2. Suphaphat Kwonpongsagoon & Chanokwan Katasila & Pornpimol Kongtip & Susan Woskie, 2021. "Application Intensity and Spatial Distribution of Three Major Herbicides from Agricultural and Nonagricultural Practices in the Central Plain of Thailand," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    3. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    4. Veronika Vaseková, 2022. "How do people in China perceive water? From health threat perception to environmental policy change," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 627-645, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    2. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    3. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.
    4. Molle, Francois, 2007. "Thailand’s ‘free water’: rationale for a water charge and policy shifts," Book Chapters,, International Water Management Institute.
    5. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    6. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Stefan Sieber & Mateete Bekunda & Anthony Anderson Kimaro, 2020. "Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    7. Luz Maria Castro & Fabian Härtl & Santiago Ochoa & Baltazar Calvas & Leonardo Izquierdo & Thomas Knoke, 2018. "Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations," Journal of Bioeconomics, Springer, vol. 20(2), pages 183-211, July.
    8. Molle, Francois, 2007. "Thailand\u2019s \u2018free water\u2019: rationale for a water charge and policy shifts," IWMI Books, Reports H040604, International Water Management Institute.
    9. Marín-González, Omar & Parsons, David & Arnes-Prieto, Esperanza & Díaz-Ambrona, Carlos G.H., 2018. "Building and evaluation of a dynamic model for assessing impact of smallholder endowments on food security in agricultural systems in highland areas of central America (SASHACA)," Agricultural Systems, Elsevier, vol. 164(C), pages 152-164.
    10. Molle, F., 2003. "Reform of the Thai irrigation sector: is there scope for increasing water productivity," IWMI Books, Reports H032647, International Water Management Institute.
    11. Piyanuch, Wuttisorn & MacAulay, T. Gordon & Batterham, Robert L., 2003. "Modelling Water Use in Thailand," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 58272, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:13:y:2011:i:2:p:403-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.