IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v25y2025i2d10.1007_s10660-023-09714-4.html
   My bibliography  Save this article

A novel bidding strategy based on dynamic targeting in real-time bidding market

Author

Listed:
  • Chaoyong Qin

    (Guangxi University)

  • Chajuan Hu

    (Guangxi University)

  • Yujie Feng

    (Guangxi University)

Abstract

Driven by big data analytics technology, real-time bidding (RTB) advertising has emerged as a mainstream paradigm in online advertising. Demand-side platform, acting as advertiser agents, develop bidding strategy for advertiser to match target audience and to make appropriate bid price in RTB market. Most bidding strategies target potential audience via cookie-based data analysis and market segmentation. However, due to the granularity choice dilemma, segmenting market in advance according to historical data may lead to targeting deviation. In addition, it cannot capture the changes of users’ interests in time. A novel bidding strategy with dynamic targeting is proposed in this study. A user similarity model is constructed by calculating the distance between reaching user and typical target audience in a feature space. On this basis, bid price is determined. The profile of target audience is depicted based on prior information and then adjusted dynamically according to users’ responses. Hence, targeting deviation caused by market segmentation which relies heavily on historical data is reduced. Additionally, we theoretically reveal a negative correlation between bid price and revenue along with a positive correlation between bid price and impression rate. Computational experimental results demonstrate the superiority of our strategy over the existing strategy in this regard.

Suggested Citation

  • Chaoyong Qin & Chajuan Hu & Yujie Feng, 2025. "A novel bidding strategy based on dynamic targeting in real-time bidding market," Electronic Commerce Research, Springer, vol. 25(2), pages 1067-1088, April.
  • Handle: RePEc:spr:elcore:v:25:y:2025:i:2:d:10.1007_s10660-023-09714-4
    DOI: 10.1007/s10660-023-09714-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-023-09714-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-023-09714-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    2. Shalinda Adikari & Kaushik Dutta, 2019. "A New Approach to Real-Time Bidding in Online Advertisements: Auto Pricing Strategy," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 66-82, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parag A. Pathak & Alex Rees-Jones & Tayfun Sönmez, 2025. "Immigration Lottery Design: Engineered and Coincidental Consequences of H-1B Reforms," The Review of Economics and Statistics, MIT Press, vol. 107(1), pages 1-13, January.
    2. Frank Kelly & Peter Key & Neil Walton, 2016. "Efficient Advert Assignment," Operations Research, INFORMS, vol. 64(4), pages 822-837, August.
    3. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    4. C.-Philipp Heller & Johannes Johnen & Sebastian Schmitz, 2019. "Congestion Pricing: A Mechanism Design Approach," Journal of Transport Economics and Policy, University of Bath, vol. 53(1), pages 74-7-98.
    5. Jason Rhuggenaath & Alp Akcay & Yingqian Zhang & Uzay Kaymak, 2022. "Setting Reserve Prices in Second-Price Auctions with Unobserved Bids," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2950-2967, November.
    6. Fei Long & Kinshuk Jerath & Miklos Sarvary, 2022. "Designing an Online Retail Marketplace: Leveraging Information from Sponsored Advertising," Marketing Science, INFORMS, vol. 41(1), pages 115-138, January.
    7. Jonathan Levin, 2011. "The Economics of Internet Markets," Discussion Papers 10-018, Stanford Institute for Economic Policy Research.
    8. Sameer Mehta & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2020. "Sustaining a Good Impression: Mechanisms for Selling Partitioned Impressions at Ad Exchanges," Information Systems Research, INFORMS, vol. 31(1), pages 126-147, March.
    9. Avi Goldfarb, 2014. "What is Different About Online Advertising?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(2), pages 115-129, March.
    10. Suat Evren, 2023. "Social Surplus Maximization in Sponsored Search Auctions Requires Communication," Papers 2305.07729, arXiv.org.
    11. José Alcalde & Matthias Dahm, "undated". "Supplier Diversity before the Time of Cholera," Discussion Papers in Economics 20/07, Division of Economics, School of Business, University of Leicester.
    12. Axel Ockenfels & David Reiley & Abdolkarim Sadrieh, 2006. "Online Auctions," NBER Working Papers 12785, National Bureau of Economic Research, Inc.
    13. W. Jason Choi & Amin Sayedi, 2019. "Learning in Online Advertising," Marketing Science, INFORMS, vol. 38(4), pages 584-608, July.
    14. Eric Bax, 2020. "Heavy Tails Make Happy Buyers," Papers 2002.09014, arXiv.org.
    15. Martin Spann & Bernd Skiera, 2020. "Dynamische Preisgestaltung in der digitalisierten Welt [Dynamic Pricing in a Digitized World]," Schmalenbach Journal of Business Research, Springer, vol. 72(3), pages 321-342, September.
    16. Jonathan Levin & Paul Milgrom, 2010. "Online Advertising: Heterogeneity and Conflation in Market Design," American Economic Review, American Economic Association, vol. 100(2), pages 603-607, May.
    17. Estrella Alonso & Joaquín Sánchez-Soriano & Juan Tejada, 2020. "Mixed Mechanisms for Auctioning Ranked Items," Mathematics, MDPI, vol. 8(12), pages 1-26, December.
    18. Francesco Decarolis & Gabriele Rovigatti, 2021. "From Mad Men to Maths Men: Concentration and Buyer Power in Online Advertising," American Economic Review, American Economic Association, vol. 111(10), pages 3299-3327, October.
    19. Navdeep S. Sahni & Charles Zhang, 2024. "Are consumers averse to sponsored messages? The role of search advertising in information discovery," Quantitative Marketing and Economics (QME), Springer, vol. 22(1), pages 63-114, March.
    20. Darius Schlangenotto & Martin Poniatowski & Dennis Kundisch, 2018. "What Drives Paid Search Success: A Systematic Literature Review," Working Papers Dissertations 31, Paderborn University, Faculty of Business Administration and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:25:y:2025:i:2:d:10.1007_s10660-023-09714-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.