IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i4d10.1007_s10660-022-09534-y.html
   My bibliography  Save this article

A novel approach for product competitive analysis based on online reviews

Author

Listed:
  • Zhen He

    (Tianjin University)

  • Lu Zheng

    (Tianjin University)

  • Shuguang He

    (Tianjin University)

Abstract

Recently, online reviews have become a prevalent information source for competitive analysis because they provide rich information on the voices of customers. Based on online reviews, we propose a novel method named Integrated-Degree based K-shell decomposition (ID-KS) to conduct competitive analysis via product comparison networks. Under the consideration of feature differences among products, we apply text-mining approaches and ID-KS to convert online reviews into competitive insights including competitor identification, product comparison, product ranking, brand comparison and market-structure analysis. To validate the feasibility and the effectiveness of ID-KS, we demonstrate our approach in two cases, SUV cars and laptops, and compare it with state-of-the-art methods. The results show that ID-KS analyzes product comparison networks more effectively and properly, and it derives comprehensive comparative insights that are not fully captured by existing studies.

Suggested Citation

  • Zhen He & Lu Zheng & Shuguang He, 2023. "A novel approach for product competitive analysis based on online reviews," Electronic Commerce Research, Springer, vol. 23(4), pages 2259-2290, December.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09534-y
    DOI: 10.1007/s10660-022-09534-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09534-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09534-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Jian-Wu Bi & Yang Liu & Zhi-Ping Fan & Erik Cambria, 2019. "Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 7068-7088, November.
    3. Xiang, Zheng & Du, Qianzhou & Ma, Yufeng & Fan, Weiguo, 2017. "A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism," Tourism Management, Elsevier, vol. 58(C), pages 51-65.
    4. Candi, Marina & Jae, Haeran & Makarem, Suzanne & Mohan, Mayoor, 2017. "Consumer responses to functional, aesthetic and symbolic product design in online reviews," Journal of Business Research, Elsevier, vol. 81(C), pages 31-39.
    5. Lee, Kiljae & Yu, Chunyan, 2018. "Assessment of airport service quality: A complementary approach to measure perceived service quality based on Google reviews," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 28-44.
    6. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    7. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    8. Kim Hua Tan & Guojun Ji & Chee Peng Lim & Ming-Lang Tseng, 2017. "Using big data to make better decisions in the digital economy," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 4998-5000, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Yuan & Tianhui You & Tian’ai Xu & Xun Yu, 2022. "Customer-Oriented Strategic Planning for Hotel Competitiveness Improvement Based on Online Reviews," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    2. Seungju Nam & Hyun Cheol Lee, 2019. "A Text Analytics-Based Importance Performance Analysis and Its Application to Airline Service," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
    3. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    4. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    5. Xiao-kang Wang & Sheng-hui Wang & Hong-yu Zhang & Jian-qiang Wang & Lin Li, 2021. "The Recommendation Method for Hotel Selection Under Traveller Preference Characteristics: A Cloud-Based Multi-Criteria Group Decision Support Model," Group Decision and Negotiation, Springer, vol. 30(6), pages 1433-1469, December.
    6. Gang Ren & Taeho Hong, 2017. "Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    7. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    8. Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
    9. Barakat, H. & Yeniterzi, R. & Martín-Domingo, L., 2021. "Applying deep learning models to twitter data to detect airport service quality," Journal of Air Transport Management, Elsevier, vol. 91(C).
    10. Woohyuk Kim & Sung-Bum Kim & Eunhye Park, 2021. "Mapping Tourists’ Destination (Dis)Satisfaction Attributes with User-Generated Content," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    11. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    12. Zhang, Chenxi & Xu, Zeshui, 2024. "Gaining insights for service improvement through unstructured text from online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 80(C).
    13. Shuhua Yin & Chengzhou Fu & Guangquan Dai, 2023. "Exploring the Festival Attendees’ Experiences on Social Media: A Study on the Guangzhou International Light Festival," SAGE Open, , vol. 13(1), pages 21582440221, January.
    14. Zhang, Min & Sun, Lin & Wang, G. Alan & Li, Yuzhuo & He, Shuguang, 2022. "Using neutral sentiment reviews to improve customer requirement identification and product design strategies," International Journal of Production Economics, Elsevier, vol. 254(C).
    15. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    16. Xiaobin Zhang & Jun Yu & Hak-Seon Kim, 2024. "Exploring Customers Experience and Satisfaction with Theme Hotels: A Cross-Cultural Analysis of Hotel Reviews," SAGE Open, , vol. 14(2), pages 21582440241, May.
    17. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    18. Sunyoung Hlee & Hanna Lee & Chulmo Koo, 2018. "Hospitality and Tourism Online Review Research: A Systematic Analysis and Heuristic-Systematic Model," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    19. Wenzhi Cao & Xingen Yang & Yi Yang, 2023. "A Large-Scale Reviews-Driven Multi-Criteria Product Ranking Approach Based on User Credibility and Division Mechanism," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    20. Susan (Sixue) Jia, 2021. "Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights," Sustainability, MDPI, vol. 13(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09534-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.