IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i3d10.1007_s10589-020-00255-2.html
   My bibliography  Save this article

Polyhedral approximations of the semidefinite cone and their application

Author

Listed:
  • Yuzhu Wang

    (University of Tsukuba)

  • Akihiro Tanaka

    (Central Research Institute of Electric Power Industry)

  • Akiko Yoshise

    (University of Tsukuba)

Abstract

We develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (Ann Oper Res 265:155–182, 2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded SD bases contains the set of all diagonally dominant matrices and is contained in the set of all scaled diagonally dominant matrices. We also prove that the set of all scaled diagonally dominant matrices can be expressed using an infinite number of expanded SD bases. We use our approximations as the initial approximation in cutting plane methods for solving a semidefinite relaxation of the maximum stable set problem. It is found that the proposed methods with expanded SD bases are significantly more efficient than methods using other existing approximations or solving semidefinite relaxation problems directly.

Suggested Citation

  • Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:3:d:10.1007_s10589-020-00255-2
    DOI: 10.1007/s10589-020-00255-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00255-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ken Kobayashi & Yuich Takano, 2020. "A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 75(2), pages 493-513, March.
    2. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    3. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    4. Naohiko Arima & Sunyoung Kim & Masakazu Kojima & Kim-Chuan Toh, 2017. "A robust Lagrangian-DNN method for a class of quadratic optimization problems," Computational Optimization and Applications, Springer, vol. 66(3), pages 453-479, April.
    5. Hayato Waki & Masakazu Muramatsu, 2013. "Facial Reduction Algorithms for Conic Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 188-215, July.
    6. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
    3. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    4. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    5. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    6. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    7. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    8. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    9. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    10. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    11. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    12. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    13. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    14. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    15. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    16. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    17. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    18. Santos, Lui­s & Coutinho-Rodrigues, João & Current, John R., 2008. "Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 922-934, July.
    19. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    20. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:3:d:10.1007_s10589-020-00255-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.