IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i2d10.1007_s00180-024-01505-1.html
   My bibliography  Save this article

High dimensional T-type Estimator for robust covariance matrix estimation with applications to elliptical factor models

Author

Listed:
  • Guanpeng Wang

    (Weifang University)

  • Hengjian Cui

    (Capital Normal University)

Abstract

In this paper, a regularized t-type estimator is proposed for high-dimensional scatter matrix estimation, where the number of dimensions p is comparable to, or even larger than the sample size n, and its thresholding form is employed to deal with sparse settings. Then, regularized t-type estimator is extended to high-dimensional elliptic factor models with outliers for robust identification of common factor numbers. Finally, we illustrate that the proposed regularized t-type estimator significantly outperforms the competitors through extensive simulations, even in cases with high-dimensional data. Meanwhile, the t-type estimator can significantly improve the efficiency of Tyler’s M-estimator in Goes et al. (Ann Stat 48(1):86–110, 2020) when the samples follow a possibly heavy-tailed elliptical distribution with a non-central or unknown location parameter.

Suggested Citation

  • Guanpeng Wang & Hengjian Cui, 2025. "High dimensional T-type Estimator for robust covariance matrix estimation with applications to elliptical factor models," Computational Statistics, Springer, vol. 40(2), pages 767-794, February.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01505-1
    DOI: 10.1007/s00180-024-01505-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01505-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01505-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Maronna, Ricardo A. & Yohai, Victor J., 2017. "Robust and efficient estimation of multivariate scatter and location," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 64-75.
    3. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    4. Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
    5. Dümbgen, Lutz & Nordhausen, Klaus & Schuhmacher, Heike, 2016. "New algorithms for M-estimation of multivariate scatter and location," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 200-217.
    6. Fang Han & Han Liu, 2018. "ECA: High-Dimensional Elliptical Component Analysis in Non-Gaussian Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 252-268, January.
    7. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    8. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    9. Klaus Nordhausen & David E. Tyler, 2015. "A cautionary note on robust covariance plug-in methods," Biometrika, Biometrika Trust, vol. 102(3), pages 573-588.
    10. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    11. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    12. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    13. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    14. Yong He & Xinbing Kong & Long Yu & Xinsheng Zhang, 2022. "Large-Dimensional Factor Analysis Without Moment Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 302-312, January.
    15. Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    4. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    5. Sung Hoon Choi & Donggyu Kim, 2023. "Large Global Volatility Matrix Analysis Based on Observation Structural Information," Papers 2305.01464, arXiv.org, revised Feb 2024.
    6. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    7. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    8. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    9. Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    10. Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper Series of the Department of Economics, University of Konstanz 2018-07, Department of Economics, University of Konstanz.
    11. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
    12. Wang, Hanchao & Peng, Bin & Li, Degui & Leng, Chenlei, 2021. "Nonparametric estimation of large covariance matrices with conditional sparsity," Journal of Econometrics, Elsevier, vol. 223(1), pages 53-72.
    13. Shi Yafeng & Ai Chunrong & Yanlong Shi & Ying Tingting & Xu Qunfang, 2023. "Large covariance estimation using a factor model with common and group‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2217-2248, December.
    14. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    15. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
    16. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    17. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    18. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    19. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    20. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01505-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.