Fast and consistent algorithm for the latent block model
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-023-01373-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maria Iannario, 2010. "On the identifiability of a mixture model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 87-94.
- Timothée Tabouy & Pierre Barbillon & Julien Chiquet, 2020. "Variational Inference for Stochastic Block Models From Sampled Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 455-466, January.
- Bhatia, Parmeet Singh & Iovleff, Serge & Govaert, Gérard, 2017. "blockcluster: An R Package for Model-Based Co-Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i09).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
- Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
- Gennaro Punzo & Rosalia Castellano & Mirko Buonocore, 2018. "Job Satisfaction in the “Big Four” of Europe: Reasoning Between Feeling and Uncertainty Through CUB Models," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(1), pages 205-236, August.
- Evan Sadler, 2025. "Seeding a Simple Contagion," Econometrica, Econometric Society, vol. 93(1), pages 71-93, January.
- Stefania Capecchi & Maria Iannario & Rosaria Simone, 2018. "Well-Being and Relational Goods: A Model-Based Approach to Detect Significant Relationships," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 729-750, January.
- Federica Cugnata & Silvia Salini, 2014. "Model-based approach for importance–performance analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3053-3064, November.
- Romina Gambacorta & Maria Iannario, 2013. "Measuring Job Satisfaction with CUB Models," LABOUR, CEIS, vol. 27(2), pages 198-224, June.
- Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
- Fabio Ashtar Telarico, 2024. "A Network Approach to the Study of the Military–Industrial–Media Complex in Bulgaria," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 442-463.
- Selosse, Margot & Jacques, Julien & Biernacki, Christophe, 2020. "Model-based co-clustering for mixed type data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Gaucher, Solenne & Klopp, Olga & Robin, Geneviève, 2021. "Outlier detection in networks with missing links," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
- Gerhard Tutz & Micha Schneider & Maria Iannario & Domenico Piccolo, 2017. "Mixture models for ordinal responses to account for uncertainty of choice," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 281-305, June.
- Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
- Maria Iannario, 2012. "Modelling shelter choices in a class of mixture models for ordinal responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 1-22, March.
- Stefania Capecchi & Maria Iannario & Domenico Piccolo, 2012. "Modelling Job Satisfaction in AlmaLaurea Surveys," Working Papers 56, AlmaLaurea Inter-University Consortium.
- Stefania Capecchi & Rosaria Simone, 2019. "A Proposal for a Model-Based Composite Indicator: Experience on Perceived Discrimination in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 95-110, January.
- Manisera, Marica & Zuccolotto, Paola, 2015. "Identifiability of a model for discrete frequency distributions with a multidimensional parameter space," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 302-316.
- Maria Iannario, 2012. "Preliminary estimators for a mixture model of ordinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 163-184, October.
- Corduas, Marcella, 2015. "A statistical model for consumer preferences: the case of Italian extra virgin olive oil," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202701, European Association of Agricultural Economists.
- Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
More about this item
Keywords
Latent block model; Largest Gaps algorithm; Model selection; Data analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01373-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.