IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01331-x.html
   My bibliography  Save this article

Spatio-temporal clustering analysis using generalized lasso with an application to reveal the spread of Covid-19 cases in Japan

Author

Listed:
  • Septian Rahardiantoro

    (Okayama University
    IPB University)

  • Wataru Sakamoto

    (Okayama University)

Abstract

This study addressed the issue of determining multiple potential clusters with regularization approaches for the purpose of spatio-temporal clustering. The generalized lasso framework has flexibility to incorporate adjacencies between objects in the penalty matrix and to detect multiple clusters. A generalized lasso model with two $${L}_{1}$$ L 1 penalties is proposed, which can be separated into two generalized lasso models: trend filtering of temporal effect and fused lasso of spatial effect for each time point. To select the tuning parameters, the approximate leave-one-out cross-validation (ALOCV) and generalized cross-validation (GCV) are considered. A simulation study is conducted to evaluate the proposed method compared to other approaches in different problems and structures of multiple clusters. The generalized lasso with ALOCV and GCV provided smaller MSE in estimating the temporal and spatial effect compared to unpenalized method, ridge, lasso, and generalized ridge. In temporal effects detection, the generalized lasso with ALOCV and GCV provided relatively smaller and more stable MSE than other methods, for different structure of true risk values. In spatial effects detection, the generalized lasso with ALOCV provided higher index of edges detection accuracy. The simulation also suggested using a common tuning parameter over all time points in spatial clustering. Finally, the proposed method was applied to the weekly Covid-19 data in Japan form March 21, 2020, to September 11, 2021, along with the interpretation of dynamic behavior of multiple clusters.

Suggested Citation

  • Septian Rahardiantoro & Wataru Sakamoto, 2024. "Spatio-temporal clustering analysis using generalized lasso with an application to reveal the spread of Covid-19 cases in Japan," Computational Statistics, Springer, vol. 39(3), pages 1513-1537, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01331-x
    DOI: 10.1007/s00180-023-01331-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01331-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01331-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Hosik Choi & Eunjung Song & Seung-sik Hwang & Woojoo Lee, 2018. "A modified generalized lasso algorithm to detect local spatial clusters for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 537-563, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    3. Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
    4. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    5. Angelo Milfont & Alvaro Veiga, 2025. "Structural breaks detection and variable selection in dynamic linear regression via the Iterative Fused LASSO in high dimension," Papers 2502.20816, arXiv.org, revised Apr 2025.
    6. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    7. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    8. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    9. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    10. Franck Rapaport & Christina Leslie, 2010. "Determining Frequent Patterns of Copy Number Alterations in Cancer," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    11. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    12. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    13. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.
    14. Patrick Breheny & Prabhakar Chalise & Anthony Batzler & Liewei Wang & Brooke L Fridley, 2012. "Genetic Association Studies of Copy-Number Variation: Should Assignment of Copy Number States Precede Testing?," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    15. Wang, Li-Yu & Park, Cheolwoo & Yeon, Kyupil & Choi, Hosik, 2017. "Tracking concept drift using a constrained penalized regression combiner," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 52-69.
    16. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    19. Aytug, Haldun & Sayın, Serpil, 2012. "Exploring the trade-off between generalization and empirical errors in a one-norm SVM," European Journal of Operational Research, Elsevier, vol. 218(3), pages 667-675.
    20. Hwang, Youngdeok & Kim, Hang J. & Chang, Won & Yeo, Kyongmin & Kim, Yongku, 2019. "Bayesian pollution source identification via an inverse physics model," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 76-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01331-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.