IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-022-01316-2.html
   My bibliography  Save this article

Applications of resampling methods in multivariate Liu estimator

Author

Listed:
  • Shima Pirmohammadi

    (University of Isfahan)

  • Hamid Bidram

    (University of Isfahan)

Abstract

Multicollinearity among independent variables is one of the most common problems in regression models. The aftereffects of this problem, such as ill-conditioning, instability of estimators, and inflating mean squared error of ordinary least squares estimator (OLS), in the multivariate linear regression model (MLRM) are the same that of linear regression models. To combat multicollinearity, several approaches have been presented in the literature. Liu estimator (LE), as a well known estimator in this connection, has been used in linear, generalized linear, and nonlinear regression models by researchers in recent years. In this paper, for the first time, LE and jackknifed Liu estimator (JLE) are investigated in MLRM. To improve estimators in the sense of mean squared error, two known resampling methods, i.e., jackknife and bootstrap, are used. Finally, OLS, LE, and JLE are compared by a simulation study and also using a real data set, by resampling methods in MLRM.

Suggested Citation

  • Shima Pirmohammadi & Hamid Bidram, 2024. "Applications of resampling methods in multivariate Liu estimator," Computational Statistics, Springer, vol. 39(2), pages 677-708, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01316-2
    DOI: 10.1007/s00180-022-01316-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01316-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01316-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mori, Yuichi & Suzuki, Taiji, 2018. "Generalized ridge estimator and model selection criteria in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 243-261.
    2. Månsson, Kristofer & Kibria, B.M. Golam & Shukur, Ghazi, 2012. "On Liu estimators for the logit regression model," Economic Modelling, Elsevier, vol. 29(4), pages 1483-1488.
    3. Jibo Wu, 2016. "Modified restricted Liu estimator in logistic regression model," Computational Statistics, Springer, vol. 31(4), pages 1557-1567, December.
    4. Nyquist, Hans, 1988. "Applications of the jackknife procedure in ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 6(2), pages 177-183, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewale F. Lukman & B. M. Golam Kibria & Cosmas K. Nziku & Muhammad Amin & Emmanuel T. Adewuyi & Rasha Farghali, 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    2. Esra Akdeniz Duran & Fikri Akdeniz, 2012. "Efficiency of the modified jackknifed Liu-type estimator," Statistical Papers, Springer, vol. 53(2), pages 265-280, May.
    3. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    4. Iqra Babar & Hamdi Ayed & Sohail Chand & Muhammad Suhail & Yousaf Ali Khan & Riadh Marzouki, 2021. "Modified Liu estimators in the linear regression model: An application to Tobacco data," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
    5. Merve Kandemir Çetinkaya, 2025. "A new estimator for the multicollinear logistic regression model," Statistical Papers, Springer, vol. 66(3), pages 1-19, April.
    6. Mohamed R. Abonazel & Rasha A. Farghali, 2019. "Liu-Type Multinomial Logistic Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 203-225, December.
    7. N. H. Jadhav, 2020. "On linearized ridge logistic estimator in the presence of multicollinearity," Computational Statistics, Springer, vol. 35(2), pages 667-687, June.
    8. Nagarajah Varathan & Pushpakanthie Wijekoon, 2021. "Optimal stochastic restricted logistic estimator," Statistical Papers, Springer, vol. 62(2), pages 985-1002, April.
    9. Ghazi Shukur & Kristofer Månsson & Pär Sjölander, 2015. "Developing Interaction Shrinkage Parameters for the Liu Estimator — with an Application to the Electricity Retail Market," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 539-550, December.
    10. M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
    11. M. Revan Özkale & Engin Arıcan, 2019. "A first-order approximated jackknifed ridge estimator in binary logistic regression," Computational Statistics, Springer, vol. 34(2), pages 683-712, June.
    12. Arashi, M. & Kibria, B.M. Golam & Norouzirad, M. & Nadarajah, S., 2014. "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 53-74.
    13. Semra Türkan & Gamze Özel, 2016. "A new modified Jackknifed estimator for the Poisson regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1892-1905, August.
    14. M. Revan Özkale, 2016. "Iterative algorithms of biased estimation methods in binary logistic regression," Statistical Papers, Springer, vol. 57(4), pages 991-1016, December.
    15. Özkale, M. Revan & Arıcan, Engin, 2015. "First-order r−d class estimator in binary logistic regression model," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 19-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01316-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.