IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i2d10.1007_s00362-023-01406-3.html
   My bibliography  Save this article

Nonnegative group bridge and application in financial index tracking

Author

Listed:
  • Yonghui Liu

    (Shanghai University of International Business and Economics)

  • Yichen Lin

    (Shanghai University of International Business and Economics)

  • Xin Song

    (Shanghai University of International Business and Economics)

  • Conan Liu

    (University of New South Wales)

  • Shuangzhe Liu

    (University of Canberra)

Abstract

The stock index plays an increasingly important role in investors’ decision-making. With the continuous development of the stock markets and the advancement of financial technology, the methods of compiling stock indices have consistently improved. Index tracking attempts to match the performance of a target market index by setting up a portfolio of assets to obtain similar returns to the target index. Therefore, the methods of selecting which stocks constitute a portfolio are very important. In daily investing, investors select quality assets from the target index to include in their tracking portfolio. In this paper, a nonnegative group bridge method is proposed for variable selection and estimation of grouping variables without overlapping to aid stock selection. The estimation consistency, variable-selection consistency, and asymptotic property of this method are provided. To obtain the solution of this model, we use an idea based on the local group coordinate descent method. Using tracking error as the criterion, the nonnegative group bridge estimation method is found superior to other nonnegative methods in terms of goodness-of-fit.

Suggested Citation

  • Yonghui Liu & Yichen Lin & Xin Song & Conan Liu & Shuangzhe Liu, 2024. "Nonnegative group bridge and application in financial index tracking," Statistical Papers, Springer, vol. 65(2), pages 887-907, April.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01406-3
    DOI: 10.1007/s00362-023-01406-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01406-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01406-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    4. Wu, Lan & Yang, Yuehan & Liu, Hanzhong, 2014. "Nonnegative-lasso and application in index tracking," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 116-126.
    5. Yalian Li & Hu Yang, 2012. "A new Liu-type estimator in linear regression model," Statistical Papers, Springer, vol. 53(2), pages 427-437, May.
    6. Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    2. Dan Lou & Yuehan Yang, 2025. "Joint estimation of transfer learning on time series data," Statistical Papers, Springer, vol. 66(1), pages 1-19, January.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    6. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    7. Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
    8. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    9. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    11. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    12. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
    13. Huang Hailin & Shangguan Jizi & Ruan Peifeng & Liang Hua, 2019. "Bi-level feature selection in high dimensional AFT models with applications to a genomic study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-11, October.
    14. Zhang, Xin & Zhao, Junlong, 2024. "Group variable selection via group sparse neural network," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    15. Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
    16. Zhigeng Geng & Sijian Wang & Menggang Yu & Patrick O. Monahan & Victoria Champion & Grace Wahba, 2015. "Group variable selection via convex log-exp-sum penalty with application to a breast cancer survivor study," Biometrics, The International Biometric Society, vol. 71(1), pages 53-62, March.
    17. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    18. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    19. Jianyu Liu & Wei Sun & Yufeng Liu, 2019. "Joint skeleton estimation of multiple directed acyclic graphs for heterogeneous population," Biometrics, The International Biometric Society, vol. 75(1), pages 36-47, March.
    20. Hu, Jianhua & Xin, Xin & You, Jinhong, 2014. "Model determination and estimation for the growth curve model via group SCAD penalty," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 199-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:2:d:10.1007_s00362-023-01406-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.