IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i1d10.1007_s00180-019-00898-8.html
   My bibliography  Save this article

On a heavy-tailed parametric quantile regression model for limited range response variables

Author

Listed:
  • Artur J. Lemonte

    (Universidade Federal do Rio Grande do Norte)

  • Germán Moreno-Arenas

    (Universidad Industrial de Santander)

Abstract

On the basis of a two-parameter heavy-tailed distribution, we introduce a novel parametric quantile regression model for limited range response variables, which can be very useful in modeling bounded response variables at different levels (quantiles) in the presence of atypical observations. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. We also propose a residual analysis to assess departures from model assumptions. Additionally, the local influence method is discussed, and the normal curvature for studying local influence on the maximum likelihood estimates is derived under a specific perturbation scheme. An application to real data is presented to show the usefulness of the new parametric quantile regression model in practice.

Suggested Citation

  • Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00898-8
    DOI: 10.1007/s00180-019-00898-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00898-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00898-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    4. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    5. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    6. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    7. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    8. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    9. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    10. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    11. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    12. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    13. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    14. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souza, Tatiene C. & Cribari–Neto, Francisco, 2018. "Intelligence and religious disbelief in the United States," Intelligence, Elsevier, vol. 68(C), pages 48-57.
    2. Zhang, Jinggong, 2024. "Blended insurance scheme: A synergistic conventional-index insurance mixture," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 93-105.
    3. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    4. Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
    5. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    6. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    8. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    9. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    10. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    11. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    12. Li-Chu Chien, 2013. "Multiple deletion diagnostics in beta regression models," Computational Statistics, Springer, vol. 28(4), pages 1639-1661, August.
    13. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
    14. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
    15. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    16. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," Working Papers hal-04141696, HAL.
    18. Siyi Wang & Xing Yan & Bangqi Zheng & Hu Wang & Wangli Xu & Nanbo Peng & Qi Wu, 2021. "Risk and return prediction for pricing portfolios of non-performing consumer credit," Papers 2110.15102, arXiv.org.
    19. Edouard Civel & Nathaly Cruz, 2018. "Green, yellow or red lemons? Artefactual field experiment on houses energy labels perception," Working Papers 1809, Chaire Economie du climat.
    20. Collier, Benjamin, 2013. "Exclusive finance: How unmanaged systemic risk continues to limit financial services for the poor in a booming sector," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150433, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00898-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.