IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i2d10.1007_s00180-018-0844-5.html
   My bibliography  Save this article

Variable selection in functional additive regression models

Author

Listed:
  • Manuel Febrero-Bande

    (Universidade de Santiago de Compostela)

  • Wenceslao González-Manteiga

    (Universidade de Santiago de Compostela)

  • Manuel Oviedo de la Fuente

    (Universidade de Santiago de Compostela
    Technological Institute for Industrial Mathematics)

Abstract

This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and sequentially selects a new variable to be incorporated into the model based on the use of distance correlation proposed by Székely et al. (Ann Stat 35(6):2769–2794, 2007). For the sake of simplicity, this paper only uses additive models. However, the proposed algorithm may assess the type of contribution (linear, non linear, ...) of each variable. The algorithm has shown quite promising results when applied to simulations and real data sets.

Suggested Citation

  • Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-0844-5
    DOI: 10.1007/s00180-018-0844-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0844-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0844-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Müller, Hans-Georg & Yao, Fang, 2008. "Functional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1534-1544.
    3. Du, Pang & Cheng, Guang & Liang, Hua, 2012. "Semiparametric regression models with additive nonparametric components and high dimensional parametric components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2006-2017.
    4. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    5. Ferraty, Frédéric & Vieu, Philippe, 2009. "Additive prediction and boosting for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1400-1413, February.
    6. Manuel Febrero-Bande & Wenceslao González-Manteiga, 2013. "Generalized additive models for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 278-292, June.
    7. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    2. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Germán Aneiros & Ricardo Cao & Philippe Vieu, 2019. "Editorial on the special issue on Functional Data Analysis and Related Topics," Computational Statistics, Springer, vol. 34(2), pages 447-450, June.
    4. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    5. Manuel Oviedo de la Fuente & Carlos Cabo & Javier Roca-Pardiñas & E. Louise Loudermilk & Celestino Ordóñez, 2024. "3D Point Cloud Semantic Segmentation Through Functional Data Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 723-744, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    2. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    3. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    4. Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
    5. Geminiani, Elena & Marra, Giampiero & Moustaki, Irini, 2021. "Single and multiple-group penalized factor analysis: a trust-region algorithm approach with integrated automatic multiple tuning parameter selection," LSE Research Online Documents on Economics 108873, London School of Economics and Political Science, LSE Library.
    6. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    7. Elena Geminiani & Giampiero Marra & Irini Moustaki, 2021. "Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 65-95, March.
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    10. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    12. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    13. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    14. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    15. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    16. Stephan Brunow & Stefanie Lösch & Ostap Okhrin, 2022. "Labor market tightness and individual wage growth: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 56(1), pages 1-21, December.
    17. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    18. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    19. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    20. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-0844-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.