IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v25y2010i2p183-201.html
   My bibliography  Save this article

Supervised learning of multivariate skew normal mixture models with missing information

Author

Listed:
  • Tzy-Chy Lin
  • Tsung-I Lin

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Tzy-Chy Lin & Tsung-I Lin, 2010. "Supervised learning of multivariate skew normal mixture models with missing information," Computational Statistics, Springer, vol. 25(2), pages 183-201, June.
  • Handle: RePEc:spr:compst:v:25:y:2010:i:2:p:183-201
    DOI: 10.1007/s00180-009-0169-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-009-0169-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew-normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574.
    2. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    3. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    4. R.B. Arellano-Valle & H. Bolfarine & V.H. Lachos, 2007. "Bayesian Inference for Skew-normal Linear Mixed Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(6), pages 663-682.
    5. Tsung-I Lin & Hsiu Ho & Pao Shen, 2009. "Computationally efficient learning of multivariate t mixture models with missing information," Computational Statistics, Springer, vol. 24(3), pages 375-392, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila B. Zeller & Celso R. B. Cabral & Víctor H. Lachos, 2016. "Robust mixture regression modeling based on scale mixtures of skew-normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 375-396, June.
    2. Wan-Lun Wang & Tsung-I Lin, 2013. "An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers," Computational Statistics, Springer, vol. 28(2), pages 751-769, April.
    3. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.
    4. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.
    5. Loperfido, Nicola, 2014. "Linear transformations to symmetry," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 186-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:25:y:2010:i:2:p:183-201. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.