IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v21y2006i1p9-31.html
   My bibliography  Save this article

Genetic algorithms for the selection of smoothing parameters in additive models

Author

Listed:
  • Rüdiger Krause
  • Gerhard Tutz

Abstract

No abstract is available for this item.

Suggested Citation

  • Rüdiger Krause & Gerhard Tutz, 2006. "Genetic algorithms for the selection of smoothing parameters in additive models," Computational Statistics, Springer, vol. 21(1), pages 9-31, March.
  • Handle: RePEc:spr:compst:v:21:y:2006:i:1:p:9-31
    DOI: 10.1007/s00180-006-0248-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-006-0248-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-006-0248-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    2. S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
    3. Helen Parise & M. P. Wand & David Ruppert & Louise Ryan, 2001. "Incorporation of historical controls using semiparametric mixed models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 31-42.
    4. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donatien Tafin Djoko & Yves Till�, 2015. "Selection of balanced portfolios to track the main properties of a large market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 359-370, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
    2. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.
    3. Baccini, Michela & Biggeri, Annibale & Lagazio, Corrado & Lertxundi, Aitana & Saez, Marc, 2007. "Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4324-4336, May.
    4. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    5. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    6. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    7. Schimek, Michael G. & Turlach, Berwin A., 1998. "Additive and generalized additive models: A survey," SFB 373 Discussion Papers 1998,97, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Stefan Sperlich & Raoul Theler, 2015. "Modeling heterogeneity: a praise for varying-coefficient models in causal analysis," Computational Statistics, Springer, vol. 30(3), pages 693-718, September.
    9. Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    13. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    14. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    15. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    16. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    17. Degui Li & Oliver Linton & Zudi Lu, 2012. "A Flexible Semiparametric Model for Time Series," Monash Econometrics and Business Statistics Working Papers 17/12, Monash University, Department of Econometrics and Business Statistics.
    18. Lin, Lu & Song, Yunquan & Liu, Zhao, 2014. "Local linear–additive estimation for multiple nonparametric regressions," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 252-269.
    19. Juan Manuel Julio & Norberto Rodr�guez & H�ctor Manuel Z�rate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    20. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:21:y:2006:i:1:p:9-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.