IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v16y2019i1d10.1007_s10287-018-0300-6.html
   My bibliography  Save this article

On the construction of hourly price forward curves for electricity prices

Author

Listed:
  • Rüdiger Kiesel

    (University Duisburg-Essen
    University of Oslo)

  • Florentina Paraschiv

    (Norwegian University of Science and Technology)

  • Audun Sætherø

    (University Duisburg-Essen)

Abstract

There are several approaches in the literature for the derivation of price forward curves (PFCs) which distinguish among each other by the procedure employed for the derivation of seasonality shapes, smoothing technique and by the design of the optimization procedure. However, a comparative study to highlight the strengths and weaknesses of different methods is missing. For the construction of PFCs we typically incorporate the information about market expectation from the observed futures prices and the deterministic seasonal effects of electricity prices. In most existing approaches, the seasonality shape is fitted to historically observed spot prices, and it is an exogenous input to the optimization procedure. As seasonal effects on electricity prices differ between markets, our model allows a more general and flexible definition of the seasonality shape. In this study, we propose an alternative calibration procedure for the seasonality shape, where the level of futures as well as historical spot prices are simultaneously taken into account in a joint optimization approach. We discuss comparatively the features of existing methods for PFCs, and highlight the advantages of our optimization procedure.

Suggested Citation

  • Rüdiger Kiesel & Florentina Paraschiv & Audun Sætherø, 2019. "On the construction of hourly price forward curves for electricity prices," Computational Management Science, Springer, vol. 16(1), pages 345-369, February.
  • Handle: RePEc:spr:comgts:v:16:y:2019:i:1:d:10.1007_s10287-018-0300-6
    DOI: 10.1007/s10287-018-0300-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-018-0300-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-018-0300-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paraschiv, Florentina & Bunn, Derek & Westgaard, Sjur, 2016. "Estimation and Application of Fully Parametric Multifactor Quantile Regression with Dynamic Coefficients," Working Papers on Finance 1607, University of St. Gallen, School of Finance.
    2. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    3. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    4. Fleten, Stein-Erik & Lemming, Jacob, 2003. "Constructing forward price curves in electricity markets," Energy Economics, Elsevier, vol. 25(5), pages 409-424, September.
    5. Patrick Hagan & Graeme West, 2006. "Interpolation Methods for Curve Construction," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(2), pages 89-129.
    6. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    7. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgia Callegaro & Andrea Mazzoran & Carlo Sgarra, 2019. "A Self-Exciting Modelling Framework for Forward Prices in Power Markets," Papers 1910.13286, arXiv.org.
    2. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benth, Fred Espen & Paraschiv, Florentina, 2016. "A Structural Model for Electricity Forward Prices," Working Papers on Finance 1611, University of St. Gallen, School of Finance.
    2. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    3. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    4. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    5. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
    6. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    7. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    8. Hörnlein, Lena, 2019. "The value of gas-fired power plants in markets with high shares of renewable energy," Energy Economics, Elsevier, vol. 81(C), pages 1078-1098.
    9. Peter Leoni & Pieter Segaert & Sven Serneels & Tim Verdonck, 2018. "Multivariate constrained robust M‐regression for shaping forward curves in electricity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1391-1406, November.
    10. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
    11. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    12. Hinderks, W.J. & Wagner, A., 2019. "Pricing German Energiewende products: Intraday cap/floor futures," Energy Economics, Elsevier, vol. 81(C), pages 287-296.
    13. Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).
    14. Borak, Szymon & Weron, Rafal, 2008. "A semiparametric factor model for electricity forward curve dynamics," MPRA Paper 10421, University Library of Munich, Germany.
    15. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    16. Katarzyna Maciejowska & Weronika Nitka & Tomasz Weron, 2019. "Enhancing load, wind and solar generation forecasts in day-ahead forecasting of spot and intraday electricity prices," HSC Research Reports HSC/19/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    18. Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
    19. Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
    20. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:16:y:2019:i:1:d:10.1007_s10287-018-0300-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.