IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v148y2018i1d10.1007_s10584-018-2184-4.html
   My bibliography  Save this article

Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe—the INTACT framework

Author

Listed:
  • A. Reder

    (CMCC Foundation, Euro-Mediterranean Center on Climate Change, REMHI division
    University Federico II)

  • M. Iturbide

    (IFCA (CSIC-University of Cantabria))

  • S. Herrera

    (Univ. Cantabria)

  • G. Rianna

    (CMCC Foundation, Euro-Mediterranean Center on Climate Change, REMHI division)

  • P. Mercogliano

    (CMCC Foundation, Euro-Mediterranean Center on Climate Change, REMHI division
    CIRA Centro Italiano Ricerche Aerospaziali, Laboratory of Meteorology)

  • J. M. Gutiérrez

    (IFCA (CSIC-University of Cantabria))

Abstract

Extreme weather events are projected to be more frequent and severe across the globe because of global warming. This poses challenging problems for critical infrastructures, which could be dramatically affected (or disrupted), and may require adaptation plans to the changing climate conditions. The INTACT FP7-European project evaluated the resilience and vulnerability of critical infrastructures to extreme weather events in a climate change scenario. To identify changes in the hazard induced by climate change, appropriate extreme weather indicators (EWIs), as proxies of the main atmospheric features triggering events with high impact on the infrastructures, were defined for a number of case studies and different approaches were analyzed to obtain local climate projections. We considered the influence of weighting and bias correction schemes on the delta approach followed to obtain the resulting projections, considering data from the Euro-CORDEX ensemble of regional future climate scenarios over Europe. The aim is to provide practitioners, decision-makers, and administrators with appropriate methods to obtain actionable and plausible results on local/regional future climate scenarios. Our results show a small sensitivity to the weighting approach and a large sensitivity to bias correcting the future projections.

Suggested Citation

  • A. Reder & M. Iturbide & S. Herrera & G. Rianna & P. Mercogliano & J. M. Gutiérrez, 2018. "Assessing variations of extreme indices inducing weather-hazards on critical infrastructures over Europe—the INTACT framework," Climatic Change, Springer, vol. 148(1), pages 123-138, May.
  • Handle: RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2184-4
    DOI: 10.1007/s10584-018-2184-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2184-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2184-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilby,Robert L., 2017. "Climate Change in Practice," Cambridge Books, Cambridge University Press, number 9781107143456, October.
    2. Wilby,Robert L., 2017. "Climate Change in Practice," Cambridge Books, Cambridge University Press, number 9781316507773, October.
    3. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    4. Douglas Maraun & Theodore G. Shepherd & Martin Widmann & Giuseppe Zappa & Daniel Walton & José M. Gutiérrez & Stefan Hagemann & Ingo Richter & Pedro M. M. Soares & Alex Hall & Linda O. Mearns, 2017. "Towards process-informed bias correction of climate change simulations," Nature Climate Change, Nature, vol. 7(11), pages 764-773, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    2. Alfredo Reder & Mario Raffa & Myriam Montesarchio & Paola Mercogliano, 2020. "Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 151-177, May.
    3. Zhuohang Li & Tao Shen & Yifen Yin & Hsing Hung Chen, 2022. "Innovation Input, Climate Change, and Energy-Environment-Growth Nexus: Evidence from OECD and Non-OECD Countries," Energies, MDPI, vol. 15(23), pages 1-19, November.
    4. Argyroudis, Sotirios A. & Mitoulis, Stergios Α. & Winter, Mike G. & Kaynia, Amir M., 2019. "Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    4. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    5. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    6. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    7. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    8. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    9. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    10. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    11. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    12. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    13. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    14. Catherine C. Ivanovich & Tianyi Sun & Doria R. Gordon & Ilissa B. Ocko, 2023. "Future warming from global food consumption," Nature Climate Change, Nature, vol. 13(3), pages 297-302, March.
    15. Erik O. Sterner & Tom Adawi & U. Martin Persson & Ulrika Lundqvist, 2019. "Knowing how and knowing when: unpacking public understanding of atmospheric CO2 accumulation," Climatic Change, Springer, vol. 154(1), pages 49-67, May.
    16. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    17. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    19. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    20. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:148:y:2018:i:1:d:10.1007_s10584-018-2184-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.