IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v27y2019i2d10.1007_s10100-018-0574-3.html
   My bibliography  Save this article

Bin packing problem with scenarios

Author

Listed:
  • Attila Bódis

    (University of Szeged)

  • János Balogh

    (University of Szeged)

Abstract

Scheduling over scenarios is one of the latest approaches in modelling scheduling problems including uncertainty. However, to the best of our knowledge, scenarios have never been applied to the bin packing problem, so here we introduce the bin packing problem with scenarios. In this model, we have a list of items with sizes between 0 and 1, and each item is assigned to one or more scenarios. In reality, the items of only one scenario will occur, but this chosen scenario is unknown at the time of packing, so the algorithms have to examine all scenarios. This means that the items have to be packed into bins such that for any scenario, the total size of the items in this scenario is at most 1 in each bin. The objective of the standard bin packing problem is to minimize the number of bins. Here, we introduce some extensions of the objective function to the scenario based model, and we present our competitive analysis of some online bin packing algorithms adapted to scenarios.

Suggested Citation

  • Attila Bódis & János Balogh, 2019. "Bin packing problem with scenarios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 377-395, June.
  • Handle: RePEc:spr:cejnor:v:27:y:2019:i:2:d:10.1007_s10100-018-0574-3
    DOI: 10.1007/s10100-018-0574-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0574-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0574-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman Rischke, 2014. "Two-Stage Robust Combinatorial Optimization with Priced Scenarios," Operations Research Proceedings, in: Dennis Huisman & Ilse Louwerse & Albert P.M. Wagelmans (ed.), Operations Research Proceedings 2013, edition 127, pages 377-382, Springer.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    3. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    4. Esteban Feuerstein & Alberto Marchetti-Spaccamela & Frans Schalekamp & René Sitters & Suzanne Ster & Leen Stougie & Anke Zuylen, 2017. "Minimizing worst-case and average-case makespan over scenarios," Journal of Scheduling, Springer, vol. 20(6), pages 545-555, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    5. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    6. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    7. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    8. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    9. Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
    10. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    11. Jiawei Chen & Suliman Al-Homidan & Qamrul Hasan Ansari & Jun Li & Yibing Lv, 2021. "Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional Programming with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 221-243, April.
    12. Heydari, Mohammadhossein & Sullivan, Kelly M., 2019. "Robust allocation of testing resources in reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    14. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    15. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    16. Pätzold, Julius & Schöbel, Anita, 2020. "Approximate cutting plane approaches for exact solutions to robust optimization problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 20-30.
    17. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    18. Hafezalkotob, Ashkan & Makui, Ahmad, 2015. "Cooperative maximum-flow problem under uncertainty in logistic networks," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 593-604.
    19. Farhad Hassanzadeh & Hamid Nemati & Minghe Sun, 2013. "Robust Optimization for Interactive Multiobjective Programming with Imprecise Information Applied to R&D Project Portfolio Selection," Working Papers 0194mss, College of Business, University of Texas at San Antonio.
    20. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:27:y:2019:i:2:d:10.1007_s10100-018-0574-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.