IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i1d10.1007_s40745-022-00433-5.html
   My bibliography  Save this article

A Comprehensive Study of Artificial Intelligence and Cybersecurity on Bitcoin, Crypto Currency and Banking System

Author

Listed:
  • Tamanna Choithani

    (Indus University)

  • Asmita Chowdhury

    (Indus University)

  • Shriya Patel

    (Indus University)

  • Poojan Patel

    (Nirma University)

  • Daxal Patel

    (Nirma University)

  • Manan Shah

    (Pandit Deendayal Energy University)

Abstract

In recent years cryptocurrencies are emerging as a prime digital currency as an important asset and financial system is also emerging as an important aspect. To reduce the risk of investment and to predict price, trend, portfolio construction, and fraud detection some Artificial Intelligence techniques are required. The Paper discusses recent research in the field of AI techniques for cryptocurrency and Bitcoin which is the most popular cryptocurrency. AI and ML techniques such as SVM, ANN, LSTM, GRU, and much other related research work with cryptocurrency and Bitcoin have been reviewed and most relevant studies are discussed in the paper. Also highlighted some possible research opportunities and areas for better efficiency of the results. Recently in the past few years, artificial intelligence (AI) and cybersecurity have advanced expeditiously. Its implementation has been extensively useful in finance as well as has a crucial impact on markets, institutions, and legislation. It is making the world a better place. AI is responsible for the simulation of machines that are replicas of human beings and are intelligent enough. AI in finance is changing the way we communicate with money. It helps the financial industry streamline and optimize processes from credit judgments to quantitative analysis marketing and economic risk management. The main goal of this research has been investigating certain impacts of artificial intelligence in this contemporary world. It's centered on the appeal of artificial intelligence, confrontation, chances, and its influence on professions and careers. The research paper uses AI to enable banks to generate financial resources and to provide valuable customer services. The application of the growing Indian banking sector is part of everyday life made up of several banks like RBI, SBI, HDFC, etc. and these banks have digitally implemented using chat-bots that have brought benefits to the customers.

Suggested Citation

  • Tamanna Choithani & Asmita Chowdhury & Shriya Patel & Poojan Patel & Daxal Patel & Manan Shah, 2024. "A Comprehensive Study of Artificial Intelligence and Cybersecurity on Bitcoin, Crypto Currency and Banking System," Annals of Data Science, Springer, vol. 11(1), pages 103-135, February.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00433-5
    DOI: 10.1007/s40745-022-00433-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00433-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00433-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    2. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    3. Thomas E. Koker & Dimitrios Koutmos, 2020. "Cryptocurrency Trading Using Machine Learning," JRFM, MDPI, vol. 13(8), pages 1-7, August.
    4. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut Bağcı & Pınar Kaya Soylu, 2024. "Optimal portfolio selection with volatility information for a high frequency rebalancing algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
    2. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    3. Hakan Pabuccu & Adrian Barbu, 2024. "Feature selection with annealing for forecasting financial time series," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    4. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    5. Jiri Kukacka & Ladislav Kristoufek, 2023. "Fundamental and speculative components of the cryptocurrency pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    6. Wang, Yaqi & Wang, Chunfeng & Sensoy, Ahmet & Yao, Shouyu & Cheng, Feiyang, 2022. "Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Isabela Ruiz Roque da Silva & Eli Hadad Junior & Pedro Paulo Balbi, 2022. "Cryptocurrencies trading algorithms: A review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1661-1668, December.
    8. Elie Bouri & Rangan Gupta & Xuan Vinh Vo, 2022. "Jumps in Geopolitical Risk and the Cryptocurrency Market: The Singularity of Bitcoin," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(2), pages 150-161, February.
    9. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    10. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    11. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    12. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    13. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    14. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    15. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    16. Satti R. G. Reddy & G. P. Saradhi Varma & Rajya Lakshmi Davuluri, 2024. "Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision," Annals of Data Science, Springer, vol. 11(1), pages 243-272, February.
    17. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    18. Astha Modi & Khelan Shah & Shrey Shah & Samir Patel & Manan Shah, 2024. "Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis," Annals of Data Science, Springer, vol. 11(1), pages 159-180, February.
    19. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    20. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00433-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.