IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-022-04531-8.html
   My bibliography  Save this article

BACS: blockchain and AutoML-based technology for efficient credit scoring classification

Author

Listed:
  • Fan Yang

    (Xi’an Jiaotong University)

  • Yanan Qiao

    (Xi’an Jiaotong University)

  • Yong Qi

    (Xi’an Jiaotong University)

  • Junge Bo

    (Xi’an Jiaotong University)

  • Xiao Wang

    (Xi’an Jiaotong University)

Abstract

Credit evaluation is of high scientific significance and practical use, especially in today’s plight of the world suffering from the COVID-19 epidemic. However, due to the difficulties inherent in credit scoring model building which involves a large number of data mining steps and requires a lot of time to process the data and build the model, efficient and accurate credit scoring methods are are urgently required. Aiming to solve this problem, we propose BACS, an blockchain and automated machine learning based classification model using credit dataset so that the credit modelling processes are performed in the pipeline in an automated manner to eventually obtain the classification results of credit scoring. BACS scheme consists of credit data storage to blockchain, feature extraction, feature selection, modelling algorithm and hyperparameter optimization, and model evaluation. Firstly, we propose a mechanism for credit data management and storage using blockchain to ensure that the entire credit scoring system is traceable and that the information of each scoring candidate is securely, efficiently and tamper-proofly stored on the blockchain nodes. Next, we design a pipeline using a random forest model to effectively integrate the key steps of credit data feature extraction, feature selection, credit model construction, and model evaluation. The experimental results demonstrate that our proposed automated machine learning-based credit scoring classification scheme BACS can assess the credit condition efficiently and accurately.

Suggested Citation

  • Fan Yang & Yanan Qiao & Yong Qi & Junge Bo & Xiao Wang, 2025. "BACS: blockchain and AutoML-based technology for efficient credit scoring classification," Annals of Operations Research, Springer, vol. 345(2), pages 703-723, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04531-8
    DOI: 10.1007/s10479-022-04531-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04531-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04531-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    2. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LLC, vol. 20(1), pages 3-29, March.
    3. Michael Doumpos & Constantin Zopounidis, 2007. "Model combination for credit risk assessment: A stacked generalization approach," Annals of Operations Research, Springer, vol. 151(1), pages 289-306, April.
    4. Chrysovalantis Gaganis & Panagiota Papadimitri & Menelaos Tasiou, 2021. "A multicriteria decision support tool for modelling bank credit ratings," Annals of Operations Research, Springer, vol. 306(1), pages 27-56, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CAGE Online Working Paper Series 688, Competitive Advantage in the Global Economy (CAGE).
    3. Chen Xiang & Nur Aulia Bt Rosni & Norafida Ab Ghafar, 2025. "A Landscape Narrative Model for Visitor Satisfaction Prediction in the Living Preservation of Urban Historic Parks: A Machine-Learning Approach," Sustainability, MDPI, vol. 17(12), pages 1-33, June.
    4. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    5. Sun, Weixin & Zhang, Xuantao & Li, Minghao & Wang, Yong, 2023. "Interpretable high-stakes decision support system for credit default forecasting," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
    7. Qikang Zhong & Liang Xie & Jiade Wu, 2025. "Reimagining heritage villages’ sustainability: machine learning-driven human settlement suitability in Hunan," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-19, December.
    8. Alina Mihaela Dima & Simona Vasilache, 2016. "Credit Risk modeling for Companies Default Prediction using Neural Networks," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 127-143, September.
    9. Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. repec:bdi:wptemi:mip_053_24 is not listed on IDEAS
    11. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    12. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    13. Francisco Salas-Molina & Juan A. Rodriguez-Aguilar & Pablo Díaz-García, 2018. "Selecting cash management models from a multiobjective perspective," Annals of Operations Research, Springer, vol. 261(1), pages 275-288, February.
    14. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    15. Ma, Xuejiao & Che, Tianqi & Jiang, Qichuan, 2025. "A three-stage prediction model for firm default risk: An integration of text sentiment analysis," Omega, Elsevier, vol. 131(C).
    16. Miao Zhu & Ben-Chang Shia & Meng Su & Jialin Liu, 2024. "Consumer Default Risk Portrait: An Intelligent Management Framework of Online Consumer Credit Default Risk," Mathematics, MDPI, vol. 12(10), pages 1-19, May.
    17. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    18. Yusheng Li & Mengyi Sha, 2024. "Two‐stage credit risk prediction framework based on three‐way decisions with automatic threshold learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1263-1277, August.
    19. Benjamin Miranda Tabak & Débora H. Cardoso & Cristiano C. Silva, 2025. "Assessing the Drivers of Financial Vulnerability and Fraud in Brazil: The Critical Role of Financial Planning over Literacy," Sustainability, MDPI, vol. 17(20), pages 1-33, October.
    20. Simone Narizzano & Marco Orlandi & Antonio Scalia, 2024. "The Bank of Italy’s statistical model for the credit assessment of non-financial firms," Mercati, infrastrutture, sistemi di pagamento (Markets, Infrastructures, Payment Systems) 53, Bank of Italy, Directorate General for Markets and Payment System.
    21. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04531-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.