IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v321y2023i1d10.1007_s10479-022-05094-4.html
   My bibliography  Save this article

Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents

Author

Listed:
  • Shuwan Zhu

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education)

  • Wenjuan Fan

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education)

  • Shanlin Yang

    (Hefei University of Technology
    Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education)

  • Panos M. Pardalos

    (University of Florida)

Abstract

In mass casualty incidents, patients need to be evacuated to nearby hospitals as soon as possible, and a surge in demand for emergency medical services then occurs. It would result in ambulance offload delays, i.e., no emergency operating room is available when the ambulance arrives at a hospital, and thus the patients cannot be treated immediately. In this paper, we aim to solve a combinatorial problem of patient-to-hospital assignment and patient surgery sequence considering patient deterioration and ambulance offload delay during a mass casualty incident. A mixed-integer programming model is proposed. The objective is to minimize the completion time of all patients’ surgeries. For solving such a problem, some structural properties of our studied problem are derived, and a heuristic is developed to solve the single operating room scheduling problem considering ambulance offload delay and patient deterioration based on these structural properties. A hybrid Firefly Algorithm-Variable Neighborhood Search algorithm incorporating the heuristic method is proposed to solve it. Our proposed algorithm can solve the problem within a short computation time, and the computational results demonstrate the superiority of our proposed algorithm over the compared algorithms.

Suggested Citation

  • Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Panos M. Pardalos, 2023. "Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents," Annals of Operations Research, Springer, vol. 321(1), pages 717-753, February.
  • Handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-05094-4
    DOI: 10.1007/s10479-022-05094-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05094-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05094-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2016. "Analysis and optimization of an ambulance offload delay and allocation problem," Omega, Elsevier, vol. 65(C), pages 148-158.
    3. Kamali, Behrooz & Bish, Douglas & Glick, Roger, 2017. "Optimal service order for mass-casualty incident response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 355-367.
    4. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    5. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    6. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    7. Dean, Matthew D. & Nair, Suresh K., 2014. "Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model," European Journal of Operational Research, Elsevier, vol. 238(1), pages 363-373.
    8. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    9. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    10. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    11. Repoussis, Panagiotis P. & Paraskevopoulos, Dimitris C. & Vazacopoulos, Alkiviadis & Hupert, Nathaniel, 2016. "Optimizing emergency preparedness and resource utilization in mass-casualty incidents," European Journal of Operational Research, Elsevier, vol. 255(2), pages 531-544.
    12. Yisha Xiang & Jun Zhuang, 2016. "A medical resource allocation model for serving emergency victims with deteriorating health conditions," Annals of Operations Research, Springer, vol. 236(1), pages 177-196, January.
    13. Guanlian Xiao & Willem van Jaarsveld & Ming Dong & Joris van de Klundert, 2018. "Models, algorithms and performance analysis for adaptive operating room scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1389-1413, February.
    14. Dujuan Wang & Feng Liu & Yunqiang Yin & Jianjun Wang & Yanzhang Wang, 2015. "Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 967-981, November.
    15. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    16. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    17. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    18. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    19. Leo, Gianmaria & Lodi, Andrea & Tubertini, Paolo & Di Martino, Mirko, 2016. "Emergency Department Management in Lazio, Italy," Omega, Elsevier, vol. 58(C), pages 128-138.
    20. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    21. Mengyu Li & Peter Vanberkel & Alix J. E. Carter, 2019. "A review on ambulance offload delay literature," Health Care Management Science, Springer, vol. 22(4), pages 658-675, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    2. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    3. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    4. Repoussis, Panagiotis P. & Paraskevopoulos, Dimitris C. & Vazacopoulos, Alkiviadis & Hupert, Nathaniel, 2016. "Optimizing emergency preparedness and resource utilization in mass-casualty incidents," European Journal of Operational Research, Elsevier, vol. 255(2), pages 531-544.
    5. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    6. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    7. Lee, Hyun-Rok & Lee, Taesik, 2021. "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Elsevier, vol. 291(1), pages 296-308.
    8. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    9. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Amar Ramudhin, 2019. "A hybrid approach of VIKOR and bi-objective integer linear programming for electrification planning in a disaster relief camp," Annals of Operations Research, Springer, vol. 283(1), pages 443-469, December.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    13. John B. Coles & Jing Zhang & Jun Zhuang, 2022. "Bridging the research-practice gap in disaster relief: using the IFRC Code of Conduct to develop an aid model," Annals of Operations Research, Springer, vol. 312(2), pages 1337-1357, May.
    14. Hui Li & Jin Peng & Shengguo Li & Chuang Su, 2017. "Dispatching medical supplies in emergency events via uncertain programming," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 549-558, March.
    15. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    16. Kamali, Behrooz & Bish, Douglas & Glick, Roger, 2017. "Optimal service order for mass-casualty incident response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 355-367.
    17. Acuna, Jorge A. & Zayas-Castro, José L. & Charkhgard, Hadi, 2020. "Ambulance allocation optimization model for the overcrowding problem in US emergency departments: A case study in Florida," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Li, Mengyu & Vanberkel, Peter & Zhong, Xiang, 2022. "Predicting ambulance offload delay using a hybrid decision tree model," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    19. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    20. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-05094-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.