IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v30y2015i4d10.1007_s10878-015-9846-1.html
   My bibliography  Save this article

Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period

Author

Listed:
  • Dujuan Wang

    (Dalian University of Technology)

  • Feng Liu

    (Dongbei University of Finance and Economics)

  • Yunqiang Yin

    (Kunming University of Science and Technology)

  • Jianjun Wang

    (Dalian University of Technology)

  • Yanzhang Wang

    (Dalian University of Technology)

Abstract

In this paper, we apply a scheduling model to address the single day surgery scheduling problem for single operating room (OR). The OR operational cost and patients’ satisfaction need to be balanced. We optimize the scheduling of surgeries with two priority levels in an integrated manner, given the OR is off-duty for a fixed period. Surgeon’s accumulated tiredness during working hours, and controllable surgery durations are modeled. After deriving the NP-hardness of the problem, we first solve optimally two special cases in pseudo-polynomial time, and then design a hybrid evolutionary multi-objective algorithm for the general case. Iterated local search is embedded into the elitist non-dominated sorting genetic algorithm (NSGA-II) framework, and Pareto optimal property is utilized to guide evolution towards promising areas in solution space. Finally computational studies with data from a hospital in P.R. China are performed to verify the value of algorithm hybridization against the commercial solver and original NSGA-II, and to verify the value of integrated optimization against sequential decision-making.

Suggested Citation

  • Dujuan Wang & Feng Liu & Yunqiang Yin & Jianjun Wang & Yanzhang Wang, 2015. "Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 967-981, November.
  • Handle: RePEc:spr:jcomop:v:30:y:2015:i:4:d:10.1007_s10878-015-9846-1
    DOI: 10.1007/s10878-015-9846-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9846-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9846-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    2. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    3. Yong He & Li Sun, 2015. "One-machine scheduling problems with deteriorating jobs and position-dependent learning effects under group technology considerations," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1319-1326, May.
    4. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    5. A. R. Rahimi-Vahed & S. M. Mirghorbani, 2007. "A multi-objective particle swarm for a flow shop scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 79-102, January.
    6. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    7. Lee, Chung-Yee & Lin, Chen-Sin, 2001. "Single-machine scheduling with maintenance and repair rate-modifying activities," European Journal of Operational Research, Elsevier, vol. 135(3), pages 493-513, December.
    8. Ghaith Jaradat & Masri Ayob & Zulkifli Ahmad, 2014. "On the performance of Scatter Search for post-enrolment course timetabling problems," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 417-439, April.
    9. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    10. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Panos M. Pardalos, 2023. "Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents," Annals of Operations Research, Springer, vol. 321(1), pages 717-753, February.
    3. Hongbo Li & Li Wang & Xuan Xia & Hongbo Liu, 2021. "Perceived service quality’s effect on patient loyalty through patient attitude within the context of traditional Chinese medicine," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1030-1041, November.
    4. Jiawei Zhang & Ling Wang & Lining Xing, 2019. "Large-scale medical examination scheduling technology based on intelligent optimization," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 385-404, January.
    5. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 2021. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 677-699, November.
    6. Cheng He & Changchun Liu & Tao Wu & Ying Xu & Yang Wu & Tong Chen, 2021. "Medical rolling bearing fault prognostics based on improved extreme learning machine," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 700-721, November.
    7. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 0. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    8. Cheng He & Changchun Liu & Tao Wu & Ying Xu & Yang Wu & Tong Chen, 0. "Medical rolling bearing fault prognostics based on improved extreme learning machine," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    9. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    10. Hongbo Li & Li Wang & Xuan Xia & Hongbo Liu, 0. "Perceived service quality’s effect on patient loyalty through patient attitude within the context of traditional Chinese medicine," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    2. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    5. Yao Xiao & Reena Yoogalingam, 2021. "Reserved capacity policies for operating room scheduling," Operations Management Research, Springer, vol. 14(1), pages 107-122, June.
    6. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    7. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    8. Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
    9. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    10. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    11. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    12. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    13. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    14. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    15. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    16. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    17. Paola Cappanera & Filippo Visintin & Carlo Banditori, 2018. "Addressing conflicting stakeholders’ priorities in surgical scheduling by goal programming," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 252-271, June.
    18. Xinyu Sun & Tao Liu & Xin-Na Geng & Yang Hu & Jing-Xiao Xu, 2023. "Optimization of scheduling problems with deterioration effects and an optional maintenance activity," Journal of Scheduling, Springer, vol. 26(3), pages 251-266, June.
    19. Anders Reenberg Andersen & Thomas Jacob Riis Stidsen & Line Blander Reinhardt, 2020. "Simulation-Based Rolling Horizon Scheduling for Operating Theatres," SN Operations Research Forum, Springer, vol. 1(2), pages 1-26, June.
    20. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    21. repec:ipg:wpaper:201414 is not listed on IDEAS
    22. Mengzhuo Bai & Chunyang Ren & Yang Liu, 2015. "A note of reduced dimension optimization algorithm of assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 841-849, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:30:y:2015:i:4:d:10.1007_s10878-015-9846-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.