IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v298y2021i1d10.1007_s10479-019-03352-6.html
   My bibliography  Save this article

Online scheduling to minimize maximum weighted flow-time on a bounded parallel-batch machine

Author

Listed:
  • Xing Chai

    (Zhengzhou University
    Henan University of Technology)

  • Wenhua Li

    (Zhengzhou University)

  • Yuejuan Zhu

    (Zhengzhou University)

Abstract

An online scheduling problem on a bounded parallel-batch machine to minimize the maximum weighted flow-time is considered in this paper. Jobs arrive over time with the identical processing time. The maximum ratio between the weights of any two jobs is w. The parallel-batch machine can process at most b jobs simultaneously as a batch, and the jobs in a batch have the same starting time and the same completion time. For this problem, a deterministic online algorithm is presented. The algorithm is showed to be the best possible with a competitive ratio of $$\frac{\sqrt{4w+1}+1}{2}$$ 4 w + 1 + 1 2 when $$w\in [1,2]$$ w ∈ [ 1 , 2 ] , and to have a competitive ratio not greater than w when $$w\in (2,+\infty )$$ w ∈ ( 2 , + ∞ ) .

Suggested Citation

  • Xing Chai & Wenhua Li & Yuejuan Zhu, 2021. "Online scheduling to minimize maximum weighted flow-time on a bounded parallel-batch machine," Annals of Operations Research, Springer, vol. 298(1), pages 79-93, March.
  • Handle: RePEc:spr:annopr:v:298:y:2021:i:1:d:10.1007_s10479-019-03352-6
    DOI: 10.1007/s10479-019-03352-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03352-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03352-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manzhan Gu & Xiwen Lu, 2011. "Asymptotical optimality of WSEPT for stochastic online scheduling on uniform machines," Annals of Operations Research, Springer, vol. 191(1), pages 97-113, November.
    2. Ma, Ran & Tao, Jiping & Yuan, Jinjiang, 2016. "Online scheduling with linear deteriorating jobs to minimize the total weighted completion time," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 570-583.
    3. Chengwen Jiao & Wenhua Li & Jinjiang Yuan, 2014. "A Best Possible Online Algorithm For Scheduling To Minimize Maximum Flow-Time On Bounded Batch Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-10.
    4. Jianfa Cao & Jinjiang Yuan & Wenjie Li & Hailin Bu, 2011. "Online scheduling on batching machines to minimise the total weighted completion time of jobs with precedence constraints and identical processing times," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 51-55.
    5. Edward J. Anderson & Chris N. Potts, 2004. "Online Scheduling of a Single Machine to Minimize Total Weighted Completion Time," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 686-697, August.
    6. Wenhua Li & Jinjiang Yuan & Yixun Lin, 2007. "A note on special optimal batching structures to minimize total weighted completion time," Journal of Combinatorial Optimization, Springer, vol. 14(4), pages 475-480, November.
    7. Wenjie Li, 2015. "A Best Possible Online Algorithm for the Parallel-Machine Scheduling to Minimize the Maximum Weighted Completion Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-10.
    8. Ming Liu & Chengbin Chu & Yinfeng Xu & Jiazhen Huo, 2012. "An optimal online algorithm for single machine scheduling to minimize total general completion time," Journal of Combinatorial Optimization, Springer, vol. 23(2), pages 189-195, February.
    9. Gouchuan Zhang & Xiaoqiang Cai & C.K. Wong, 2001. "On‐line algorithms for minimizing makespan on batch processing machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 241-258, April.
    10. Kangbok Lee & Joseph Leung & Michael Pinedo, 2013. "Makespan minimization in online scheduling with machine eligibility," Annals of Operations Research, Springer, vol. 204(1), pages 189-222, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    2. Shaojun Lu & Min Kong & Zhiping Zhou & Xinbao Liu & Siwen Liu, 2022. "A hybrid metaheuristic for a semiconductor production scheduling problem with deterioration effect and resource constraints," Operational Research, Springer, vol. 22(5), pages 5405-5440, November.
    3. Xia Qian & Zhang Xingong, 2023. "Online scheduling of two-machine flowshop with lookahead and incompatible job families," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2022. "Online algorithms to schedule a proportionate flexible flow shop of batching machines," Journal of Scheduling, Springer, vol. 25(6), pages 643-657, December.
    2. Wenhua Li & Weina Zhai & Xing Chai, 2019. "Online Bi-Criteria Scheduling on Batch Machines with Machine Costs," Mathematics, MDPI, vol. 7(10), pages 1-11, October.
    3. Xing Chai & Lingfa Lu & Wenhua Li & Liqi Zhang, 2018. "Best-Possible Online Algorithms for Single Machine Scheduling to Minimize the Maximum Weighted Completion Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-11, December.
    4. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    5. Wenhua Li & Xing Chai, 2019. "The medical laboratory scheduling for weighted flow-time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 83-94, January.
    6. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 0. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    7. Xiaoyan Zhang & Ran Ma & Jian Sun & Zan-Bo Zhang, 2022. "Randomized selection algorithm for online stochastic unrelated machines scheduling," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1796-1811, October.
    8. Ran Ma & Jinjiang Yuan, 2017. "Online scheduling to minimize the total weighted completion time plus the rejection cost," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 483-503, August.
    9. Yang Fang & Peihai Liu & Xiwen Lu, 2011. "Optimal on-line algorithms for one batch machine with grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 509-516, November.
    10. Feifeng Zheng & Yuhong Chen & Ming Liu & Yinfeng Xu, 2022. "Competitive analysis of online machine rental and online parallel machine scheduling problems with workload fence," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1060-1076, September.
    11. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    12. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    13. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    14. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    15. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
    16. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.
    17. Leung, Joseph Y.-T. & Li, Chung-Lun, 2016. "Scheduling with processing set restrictions: A literature update," International Journal of Production Economics, Elsevier, vol. 175(C), pages 1-11.
    18. Manzhan Gu & Xiwen Lu & Jinwei Gu, 2017. "An asymptotically optimal algorithm for large-scale mixed job shop scheduling to minimize the makespan," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 473-495, February.
    19. Wenhua Li & Libo Wang & Xing Chai & Hang Yuan, 2020. "Online Batch Scheduling of Simple Linear Deteriorating Jobs with Incompatible Families," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    20. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:298:y:2021:i:1:d:10.1007_s10479-019-03352-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.