IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i1d10.1007_s10479-020-03654-0.html
   My bibliography  Save this article

Sustainable, multimodal and reliable supply chain design

Author

Listed:
  • Ozgur Kabadurmus

    (Yasar University)

  • Mehmet S. Erdogan

    (Yasar University)

Abstract

Emerging issues and new challenges of globalization have forced companies to design their supply chains for not only minimizing cost but also considering other factors. Supply chains are exposed to new environmental regulations to reduce their carbon emissions and compelled to consider other overlooked factors, such as risk. In this paper, we consider a multi-echelon multimodal supply chain network design problem with multiple products and components that take economic, environmental and risk factors into account. The problem is modeled as a Mixed Integer Linear Programming model and constrained by a carbon cap-and-trade scheme and a risk threshold. This novel problem realistically portrays the supply chain network design considering sustainability and reliability factors simultaneously. The proposed model has been tested on randomly generated hypothetical but realistic test instances. The impacts of different risk thresholds and unit carbon prices on the supply chain cost, risk and emissions are analyzed. The effects of multimodal transportation modes on cost, risk and emissions are also tested. Results prove that using multimodal transportation decreases supply chain cost and carbon emission. In addition, the total supply chain cost and carbon emission increase if the decision maker is risk-averse. The choice of transportation modes is sensitive only to emission levels.

Suggested Citation

  • Ozgur Kabadurmus & Mehmet S. Erdogan, 2020. "Sustainable, multimodal and reliable supply chain design," Annals of Operations Research, Springer, vol. 292(1), pages 47-70, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:1:d:10.1007_s10479-020-03654-0
    DOI: 10.1007/s10479-020-03654-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03654-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03654-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank & Ecofys, "undated". "Carbon Pricing Watch 2017," World Bank Publications - Reports 26565, The World Bank Group.
    2. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    3. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    4. Lawrence H. Goulder & Andrew R. Schein, 2013. "Carbon Taxes Versus Cap And Trade: A Critical Review," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-28.
    5. Choudhary, Alok & Sarkar, Sagar & Settur, Srikar & Tiwari, M.K., 2015. "A carbon market sensitive optimization model for integrated forward–reverse logistics," International Journal of Production Economics, Elsevier, vol. 164(C), pages 433-444.
    6. Harpreet Kaur & Surya Prakash Singh, 2019. "Sustainable procurement and logistics for disaster resilient supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 309-354, December.
    7. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    8. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    9. Liotta, Giacomo & Stecca, Giuseppe & Kaihara, Toshiya, 2015. "Optimisation of freight flows and sourcing in sustainable production and transportation networks," International Journal of Production Economics, Elsevier, vol. 164(C), pages 351-365.
    10. Ahmad Rezaee & Farzad Dehghanian & Behnam Fahimnia & Benita Beamon, 2017. "Green supply chain network design with stochastic demand and carbon price," Annals of Operations Research, Springer, vol. 250(2), pages 463-485, March.
    11. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    12. Armin Jabbarzadeh & Behnam Fahimnia & Fatemeh Sabouhi, 2018. "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5945-5968, September.
    13. Diabat, Ali & Al-Salem, Mohammed, 2015. "An integrated supply chain problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 330-338.
    14. Zakeri, Atefe & Dehghanian, Farzad & Fahimnia, Behnam & Sarkis, Joseph, 2015. "Carbon pricing versus emissions trading: A supply chain planning perspective," International Journal of Production Economics, Elsevier, vol. 164(C), pages 197-205.
    15. Behnam Fahimnia & Joseph Sarkis & John Boland & Mohsen Reisi & Mark Goh, 2015. "Policy insights from a green supply chain optimisation model," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6522-6533, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gast, Johannes & Kirkach, Evelina & Ivanov, Dmitry, 2022. "Structured literature review of transport networks and Supply Chain Resilience," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 469-496, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Thomas K. Dasaklis & Theodore G. Voutsinas & Giannis T. Tsoulfas & Fran Casino, 2022. "A Systematic Literature Review of Blockchain-Enabled Supply Chain Traceability Implementations," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    3. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    4. Zhitao Xu & Shaligram Pokharel & Adel Elomri, 2023. "An eco-friendly closed-loop supply chain facing demand and carbon price uncertainty," Annals of Operations Research, Springer, vol. 320(2), pages 1041-1067, January.
    5. Batool Madani & Afef Saihi & Akmal Abdelfatah, 2024. "A Systematic Review of Sustainable Supply Chain Network Design: Optimization Approaches and Research Trends," Sustainability, MDPI, vol. 16(8), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    3. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    4. Sina Abbasi & Babek Erdebilli, 2023. "Green Closed-Loop Supply Chain Networks’ Response to Various Carbon Policies during COVID-19," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    5. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    6. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    7. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    8. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    10. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    11. Govindan, Kannan & Gholizadeh, Hadi, 2021. "Robust network design for sustainable-resilient reverse logistics network using big data: A case study of end-of-life vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    12. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    13. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    14. El Baz, Jamal & Ruel, Salomée, 2021. "Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era," International Journal of Production Economics, Elsevier, vol. 233(C).
    15. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    16. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Impact of carbon pricing policies on the cost and emission of the biomass supply chain: Optimization models and a case study," Applied Energy, Elsevier, vol. 267(C).
    17. Ruozhen Qiu & Shunpeng Shi & Yue Sun, 2019. "A p -Robust Green Supply Chain Network Design Model under Uncertain Carbon Price and Demand," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    18. Olfati, Marjan & Paydar, Mohammad Mahdi, 2023. "Towards a responsive-sustainable-resilient tea supply chain network design under uncertainty using big data," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    19. Zahra Homayouni & Mir Saman Pishvaee & Hamed Jahani & Dmitry Ivanov, 2023. "A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 395-435, May.
    20. João Pires Ribeiro & Ana Paula F. D. Barbosa-Póvoa, 2023. "A responsiveness metric for the design and planning of resilient supply chains," Annals of Operations Research, Springer, vol. 324(1), pages 1129-1181, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:1:d:10.1007_s10479-020-03654-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.