IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-017-2635-8.html
   My bibliography  Save this article

Staff assignment policies for a mass casualty event queuing network

Author

Listed:
  • Emmett J. Lodree

    (The University of Alabama)

  • Nezih Altay

    (Depaul University)

  • Robert A. Cook

    (The University of Alabama)

Abstract

We study parallel queuing systems in which heterogeneous teams collaborate to serve queues with three different prioritization levels in the context of a mass casualty event. We assume that the health condition of casualties deteriorate as time passes and aim to minimize total deprivation cost in the system. Servers (i.e. doctors and nurses) have random arrival rates and they are assigned to a queue as soon as they arrive. While nurses and doctors serve their dedicated queues, collaborative teams of doctors and nurses serve a third type of customer, the patients in critical condition. We model this queueing network with flexible resources as a discrete-time finite horizon stochastic dynamic programming problem and develop heuristic policies for it. Our results indicate that the standard $$c \mu $$cμ rule is not an optimal policy, and that the most effective heuristic policy found in our simulation study is intuitive and has a simple structure: assign doctor/nurse teams to clear the critical patient queue with a buffer of extra teams to anticipate future critical patients, and allocate the remaining servers among the other two queues.

Suggested Citation

  • Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
  • Handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2635-8
    DOI: 10.1007/s10479-017-2635-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2635-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2635-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asli Kilic & M Cemali Dincer & Mahmut Ali Gokce, 2014. "Determining optimal treatment rate after a disaster," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1053-1067, July.
    2. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    3. Ramesh Arumugam & Maria Mayorga & Kevin Taaffe, 2009. "Inventory based allocation policies for flexible servers in serial systems," Annals of Operations Research, Springer, vol. 172(1), pages 1-23, November.
    4. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    5. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Niki Matinrad, 2016. "Disaster Management from a POM Perspective: Mapping a New Domain," Production and Operations Management, Production and Operations Management Society, vol. 25(10), pages 1611-1637, October.
    6. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2012. "A Little Flexibility Is All You Need: On the Asymptotic Value of Flexible Capacity in Parallel Queuing Systems," Operations Research, INFORMS, vol. 60(6), pages 1423-1435, December.
    7. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    8. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    9. Yisha Xiang & Jun Zhuang, 2016. "A medical resource allocation model for serving emergency victims with deteriorating health conditions," Annals of Operations Research, Springer, vol. 236(1), pages 177-196, January.
    10. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2011. "TECHNICAL NOTE---Queueing Systems with Synergistic Servers," Operations Research, INFORMS, vol. 59(3), pages 772-780, June.
    11. Izack Cohen & Avishai Mandelbaum & Noa Zychlinski, 2014. "Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 728-741.
    12. Charles H. Fine & Robert M. Freund, 1990. "Optimal Investment in Product-Flexible Manufacturing Capacity," Management Science, INFORMS, vol. 36(4), pages 449-466, April.
    13. Ran Yang & Sandjai Bhulai & Rob Mei, 2013. "Structural properties of the optimal resource allocation policy for single-queue systems," Annals of Operations Research, Springer, vol. 202(1), pages 211-233, January.
    14. Maria E. Mayorga & Emmett J. Lodree & Justin Wolczynski, 2017. "The optimal assignment of spontaneous volunteers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1106-1116, September.
    15. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2001. "Server Assignment Policies for Maximizing the Steady-State Throughput of Finite Queueing Systems," Management Science, INFORMS, vol. 47(10), pages 1421-1439, October.
    16. Maria Mayorga & Kevin Taaffe & Ramesh Arumugam, 2009. "Allocating flexible servers in serial systems with switching costs," Annals of Operations Research, Springer, vol. 172(1), pages 231-242, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    2. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2016. "Optimal control of queueing systems with non-collaborating servers," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 79-110, October.
    3. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    4. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    5. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    6. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    7. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    8. Lee, Hyun-Rok & Lee, Taesik, 2021. "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Elsevier, vol. 291(1), pages 296-308.
    9. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    10. Tuğçe Işık & Sigrún Andradóttir & Hayriye Ayhan, 2022. "Dynamic Control of Non‐Collaborative Workers When Reassignment Is Costly," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1332-1352, March.
    11. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    12. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    13. Sameer Prasad & Jason Woldt & Jasmine Tata & Nezih Altay, 2019. "Application of project management to disaster resilience," Annals of Operations Research, Springer, vol. 283(1), pages 561-590, December.
    14. Maria E. Mayorga & Emmett J. Lodree & Justin Wolczynski, 2017. "The optimal assignment of spontaneous volunteers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1106-1116, September.
    15. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    16. Abualkhair, Hussain & Lodree, Emmett J. & Davis, Lauren B., 2020. "Managing volunteer convergence at disaster relief centers," International Journal of Production Economics, Elsevier, vol. 220(C).
    17. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    18. Azrah A. Anparasan & Miguel A. Lejeune, 2018. "Data laboratory for supply chain response models during epidemic outbreaks," Annals of Operations Research, Springer, vol. 270(1), pages 53-64, November.
    19. Dimitrios G. Pandelis, 2014. "Optimal control of noncollaborative servers in two‐stage tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 435-446, September.
    20. Aili (Alice) Zou & Douglas G. Down, 2018. "Asymptotically Maximal Throughput in Tandem Systems with Flexible and Dedicated Servers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2635-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.