IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v6y2012i4p277-288.html

Non parametric statistical models for on-line text classification

Author

Listed:
  • Paola Cerchiello

  • Paolo Giudici

Abstract

Social media, such as blogs and on-line forums, contain a huge amount of information that is typically unorganized and fragmented. An important issue, that has been raising importance so far, is to classify on-line texts in order to detect possible anomalies. For example on-line texts representing consumer opinions can be, not only very precious and profitable for companies, but can also represent a serious damage if they are negative or faked. In this contribution we present a novel statistical methodology rooted in the context of classical text classification, in order to address such issues. In the literature, several classifiers have been proposed, among them support vector machine and naive Bayes classifiers. These approaches are not effective when coping with the problem of classifying texts belonging to an unknown author. To this aim, we propose to employ a new method, based on the combination of classification trees with non parametric approaches, such as Kruskal–Wallis and Brunner–Dette–Munk test. The main application of what we propose is the capability to classify an author as a new one, that is potentially trustable, or as an old one, that is potentially faked. Copyright Springer-Verlag Berlin Heidelberg 2012

Suggested Citation

  • Paola Cerchiello & Paolo Giudici, 2012. "Non parametric statistical models for on-line text classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 277-288, December.
  • Handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:277-288
    DOI: 10.1007/s11634-012-0122-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-012-0122-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-012-0122-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hoai Le Thi & Hoai Le & Van Nguyen & Tao Pham Dinh, 2008. "A DC programming approach for feature selection in support vector machines learning," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 2(3), pages 259-278, December.
    2. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Valerio Veglio & Rubina Romanello & Torben Pedersen, 2025. "Employee turnover in multinational corporations: a supervised machine learning approach," Review of Managerial Science, Springer, vol. 19(3), pages 687-728, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    3. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    4. Kim, Ahhyoun & Kim, Hyunjoong, 2022. "A new classification tree method with interaction detection capability," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    5. Hayk Manucharyan, 2020. "How do managers actually choose suppliers? Evidence from revealed preference data," Working Papers 2020-12, Faculty of Economic Sciences, University of Warsaw.
    6. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
    7. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    8. Xuedong Yan & Fan Zhang & Dan Gao & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Accumulations of Heavy Metals in Roadside Soils Close to Zhaling, Eling and Nam Co Lakes in the Tibetan Plateau," IJERPH, MDPI, vol. 10(6), pages 1-17, June.
    9. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    10. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    11. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    12. Israel‐Javier Juma‐Michilena & Maria‐Eugenia Ruiz‐Molina & Irene Gil‐Saura & Sergio Belda‐Miquel, 2023. "How to increase students' motivation to engage in university initiatives towards environmental sustainability," Journal of Consumer Affairs, Wiley Blackwell, vol. 57(3), pages 1304-1323, July.
    13. Bernard Bracy, Jill M. & Bao, Ken Q. & Mundy, Ray A., 2019. "Highway infrastructure and safety implications of AV technology in the motor carrier industry," Research in Transportation Economics, Elsevier, vol. 77(C).
    14. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    15. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    16. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    17. Chih-Chiang Wei, 2012. "Discretized and Continuous Target Fields for the Reservoir Release Rules During Floods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3457-3477, September.
    18. repec:plo:pone00:0193873 is not listed on IDEAS
    19. Uğur Ercan, 2021. "The Determinants of Turkey Household Catastrophic Health Expenditures: A Different Approach by Data Mining," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(2), pages 229-246, December.
    20. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    21. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:4:p:277-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.