IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v49y2024i2p241-267.html
   My bibliography  Save this article

Deep Learning Imputation for Asymmetric and Incomplete Likert-Type Items

Author

Listed:
  • Zachary K. Collier

    (University of Connecticut)

  • Minji Kong
  • Olushola Soyoye
  • Kamal Chawla
  • Ann M. Aviles
  • Yasser Payne

    (University of Delaware)

Abstract

Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.

Suggested Citation

  • Zachary K. Collier & Minji Kong & Olushola Soyoye & Kamal Chawla & Ann M. Aviles & Yasser Payne, 2024. "Deep Learning Imputation for Asymmetric and Incomplete Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 49(2), pages 241-267, April.
  • Handle: RePEc:sae:jedbes:v:49:y:2024:i:2:p:241-267
    DOI: 10.3102/10769986231176014
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986231176014
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986231176014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Susanna Loeb & Michael S. Christian & Heather Hough & Robert H. Meyer & Andrew B. Rice & Martin R. West, 2019. "School Differences in Social–Emotional Learning Gains: Findings From the First Large-Scale Panel Survey of Students," Journal of Educational and Behavioral Statistics, , vol. 44(5), pages 507-542, October.
    3. Olanrewaju Akande & Fan Li & Jerome Reiter, 2017. "An Empirical Comparison of Multiple Imputation Methods for Categorical Data," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 162-170, April.
    4. Pei-shan Liao, 2014. "More Happy or Less Unhappy? Comparison of the Balanced and Unbalanced Designs for the Response Scale of General Happiness," Journal of Happiness Studies, Springer, vol. 15(6), pages 1407-1423, December.
    5. Yucel, Recai M. & He, Yulei & Zaslavsky, Alan M., 2008. "Using Calibration to Improve Rounding in Imputation," The American Statistician, American Statistical Association, vol. 62, pages 125-129, May.
    6. Yan Xia & Yanyun Yang, 2016. "Bias Introduced by Rounding in Multiple Imputation for Ordered Categorical Variables," The American Statistician, Taylor & Francis Journals, vol. 70(4), pages 358-364, October.
    7. Walter L. Leite & Burak Aydin & Dee D. Cetin-Berber, 2021. "Imputation of Missing Covariate Data Prior to Propensity Score Analysis: A Tutorial and Evaluation of the Robustness of Practical Approaches," Evaluation Review, , vol. 45(1-2), pages 34-69, February.
    8. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    9. Bo Pang & Erik Nijkamp & Ying Nian Wu, 2020. "Deep Learning With TensorFlow: A Review," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 227-248, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    3. Razzak Humera & Heumann Christian, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 33-58, December.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    6. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    7. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    8. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Svetlana Zhuchkova & Aleksei Rotmistrov, 2022. "How to choose an approach to handling missing categorical data: (un)expected findings from a simulated statistical experiment," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 1-22, February.
    10. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    11. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    12. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    15. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    16. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    17. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    18. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    19. Shankar Tumati & Huibert Burger & Sander Martens & Yvonne T van der Schouw & André Aleman, 2016. "Association between Cognition and Serum Insulin-Like Growth Factor-1 in Middle-Aged & Older Men: An 8 Year Follow-Up Study," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-12, April.
    20. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:49:y:2024:i:2:p:241-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.