IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i9p2452-2469.html
   My bibliography  Save this article

A clustering-based approach to quantifying socio-demographic impacts on urban mobility patterns

Author

Listed:
  • Yang Yang
  • Samitha Samaranayake
  • Timur Dogan

Abstract

This paper uses a generalizable clustering approach to investigate the effects of socio-demographic features on aggregate urban mobility patterns, including activity distribution and travel modal split. We use K-means via principal component analysis to identify eight representative traveler clusters from the 2017 U.S. National Household Travel Survey. Based on the cluster centroids and the cluster percentages within a neighborhood, we can estimate a Temporal Mobility Choice Matrix ( TM ) that describes the neighborhood-level aggregate mobility choice pattern. The estimation accuracy is assessed in a case study in LA City. It is found that the neighborhood-level temporal mobility patterns are well-replicated, with an average R 2 of 65.47%, 53.15%, and 72.04% among all analyzed neighborhoods in the city. However, we find a moderate to low accuracy in estimating the spatial differences in the mobility patterns across neighborhoods. This could be because factors other than socio-demographics, such as physical and built environment factors like terrain, street quality, or amenity densities, are contributing to the spatial differences but have not been considered in this study. Overall, we show that socio-demographic features alone can approximate the average temporal mobility choice patterns of a given population. Our method and result can serve as the baseline and benchmark for future mobility studies that take the socio-demographics of the traveler population into consideration in modeling.

Suggested Citation

  • Yang Yang & Samitha Samaranayake & Timur Dogan, 2023. "A clustering-based approach to quantifying socio-demographic impacts on urban mobility patterns," Environment and Planning B, , vol. 50(9), pages 2452-2469, November.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:9:p:2452-2469
    DOI: 10.1177/23998083231159909
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083231159909
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083231159909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maciej Kruszyna & Przemysław Śleszyński & Jeremi Rychlewski, 2021. "Dependencies between Demographic Urbanization and the Agglomeration Road Traffic Volumes: Evidence from Poland," Land, MDPI, vol. 10(1), pages 1-22, January.
    2. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2016. "Variability in daily activity-travel patterns: the case of a one-week travel diary," Post-Print halshs-01389479, HAL.
    3. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    4. Miriam Magdolen & Sascha von Behren & Lukas Burger & Bastian Chlond, 2021. "Mobility Styles and Car Ownership—Potentials for a Sustainable Urban Transport," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    5. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    6. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Zhixiang Fang & Qingquan Li, 2015. "Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach," Transportation, Springer, vol. 42(4), pages 625-646, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    2. Benjamin Motte-Baumvol & Julie Fen-Chong & Olivier Bonin, 2023. "Immobility in a weekly mobility routine: studying the links between mobile and immobile days for employees and retirees," Transportation, Springer, vol. 50(5), pages 1723-1742, October.
    3. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    4. Templ, Matthias & Meindl, Bernhard & Kowarik, Alexander & Dupriez, Olivier, 2017. "Simulation of Synthetic Complex Data: The R Package simPop," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i10).
    5. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    6. Xingang Zhou & Anthony G. O. Yeh, 2021. "Understanding the modifiable areal unit problem and identifying appropriate spatial unit in jobs–housing balance and employment self-containment using big data," Transportation, Springer, vol. 48(3), pages 1267-1283, June.
    7. Lisa Dang & Widar von Arx, 2021. "How Can Rail Use for Leisure and Tourism Be Promoted? Using Leisure and Mobility Orientations to Segment Swiss Railway Customers," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    8. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    9. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    10. Zou, Tianqi & Aemmer, Zack & MacKenzie, Don & Laberteaux, Ken, 2022. "A framework for estimating commute accessibility and adoption of ridehailing services under functional improvements from vehicle automation," Journal of Transport Geography, Elsevier, vol. 102(C).
    11. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    12. Philip C. Cooley & Sarah M. Bartsch & Shawn T. Brown & William D. Wheaton & Diane K. Wagener & Bruce Y. Lee, 2016. "Weekends as social distancing and their effect on the spread of influenza," Computational and Mathematical Organization Theory, Springer, vol. 22(1), pages 71-87, March.
    13. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    14. D. Woods & A. Cunningham & C. E. Utazi & M. Bondarenko & L. Shengjie & G. E. Rogers & P. Koper & C. W. Ruktanonchai & E. zu Erbach-Schoenberg & A. J. Tatem & J. Steele & A. Sorichetta, 2022. "Exploring methods for mapping seasonal population changes using mobile phone data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    15. Christopher L Burdett & Brian R Kraus & Sarah J Garza & Ryan S Miller & Kathe E Bjork, 2015. "Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
    16. Hu, Songhua & Xiong, Chenfeng & Chen, Peng & Schonfeld, Paul, 2023. "Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    17. Sean F. Reardon & Lindsay Fox & Joseph Townsend, 2015. "Neighborhood Income Composition by Household Race and Income, 1990–2009," The ANNALS of the American Academy of Political and Social Science, , vol. 660(1), pages 78-97, July.
    18. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    19. Ming Yi & Achla Marathe, 2013. "Policy Trap and Optimal Subsidization Policy under Limited Supply of Vaccines," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-9, July.
    20. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:9:p:2452-2469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.